精英家教网 > 高中数学 > 题目详情
17.沪昆高速铁路全线2016年12月28日开通运营.途经鹰潭北站的G1421、G1503两列列车乘务组工作人员为了了解乘坐本次列车的乘客每月需求情况,分别在两个车次各随机抽取了100名旅客进行调查,下面是根据调查结果,绘制了月乘车次数的频率分布直方图和频数分布表.
乘车次数分组频数
[0,5)15
[5,10)20
[10,15)25
[15,20)24
[20,25)11
[25,0]5
(1)若将频率视为概率,月乘车次数不低于15次的称之为“老乘客”,试问:哪一车次的“老乘客”较多,简要说明理由;
(2)已知在G1503次列车随机抽到的50岁以上人员有35名,其中有10名是“老乘客”,由条件完成2×2列联表,并根据资料判断,是否有90%的把握认为年龄与乘车次数有关,说明理由.
老乘客新乘客合计
50岁以上
50岁以下
合计
附:随机变量${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d为样本容量)
P(k2≥k00.250.150.100.050.025
k01.3232.0722.7063.8415.024

分析 (1)分别计算G1421次与G1503次“老乘客”的概率,比较即可得出结论;
(2)根据题意,填写列联表,计算观测值k2,对照临界值表得出结论.

解答 解:(1)G1421次“老乘客”的概率为P1=(0.052+0.04+0.008)×5=0.5,
G1503次“老乘客”的概率为${P_2}=\frac{24+11+5}{100}=0.4$;
∵P1>P2
∴G1421次老乘客较多;
(2)根据题意,填写列联表如下;

老乘客新乘客合计
50岁以上102535
50岁以下303565
合计4060100
计算k2=$\frac{100{×(10×35-25×30)}^{2}}{35×65×60×40}$≈2.93≥2.706,
∴有90%的把握认为年龄与乘车次数有关.

点评 本题考查了频率分布直方图和独立性检验的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.求下列各式的值.
(Ⅰ)9${\;}^{\frac{1}{2}}$+($\frac{1}{2}$)-1-lg100;
(Ⅱ)(2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=ax3+(3-a)x在[-1,1]上的最大值为3,则实数a的取值范围是(  )
A.[-$\frac{3}{2}$,3]B.[-$\frac{3}{2}$,12]C.[-3,3]D.[-3,12]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知($\sqrt{3}$+i)•z=-i(i是虚数单位),那么复数z对应的点位于复平面内的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设P为双曲线$\frac{{x}^{2}}{36}-\frac{{y}^{2}}{25}$=1右支上的任意一点,O为坐标原点,过点P作双曲线两渐近线的平行线,分别与两渐近线交于A,B两点,则平行四边形PAOB的面积为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点A(0,1),B(3,2),向量$\overrightarrow{BC}=(-7,-4)$,则向量$\overrightarrow{AC}$=(  )
A.(10,7)B.(10,5)C.(-4,-3)D.(-4,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知全集U={x|x=2n,n∈Z},集合A={-2,0,2,4},B={-2,0,4,6,8},则∁UA)∩B=(  )
A.{2,8}B.{6,8}C.{2,4,6}D.{2,4,8}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\left\{\begin{array}{l}{log_2}({1-x})+1,-1≤x<k\\{x^3}-3x+2,k≤x≤a\end{array}\right.$,若存在k使得函数f(x)的值域为[0,2],则实数a的取值范围是(  )
A.$({1,\sqrt{3}}]$B.(0,1]C.[0,1]D.$[{1,\sqrt{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{AB}=({0,2,1})$,$\overrightarrow{AC}=({-1,1,-2})$,则平面ABC的一个法向量可以是(  )
A.(3,-1,-2)B.(-4,2,2)C.(5,1,-2)D.(5,-2,1)

查看答案和解析>>

同步练习册答案