精英家教网 > 高中数学 > 题目详情
4.已知f(x)的一个原函数为$\frac{sinx}{1+xsinx}$,求∫f(x)f′(x)dx.

分析 利用∫f(x)f′(x)dx∫f(x)df(x)=$\frac{1}{2}[f(x)]^{2}$+C即可得出.

解答 解:∵f(x)的一个原函数为$\frac{sinx}{1+xsinx}$,
∴∫f(x)f′(x)dx∫f(x)df(x)=$\frac{1}{2}[f(x)]^{2}$+C=$\frac{si{n}^{2}x}{2(1+xsinx)^{2}}$+C.

点评 本题考查了微积分基本定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.下列四个判断
①某校高二一班和高二二班的人数分别是m,n,某次测试数学平均分分别是a,b,则这两个班的数学平均分为$\frac{a+b}{2}$
②10名工人生产同一种零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则c>a>b
③设m∈R,命题“若a>b,则am2>bm2”的逆否命题为假命题
④线性相关系数r越大,两个变量的线性相关性越强,反之,线性相关性越弱
其中正确的个数有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知两定点A(-2,0)和B(2,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为(  )
A.$\frac{2}{\sqrt{26}}$B.$\frac{4}{\sqrt{26}}$C.$\frac{2}{\sqrt{13}}$D.$\frac{3}{\sqrt{13}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知角α的顶点是坐标原点,始边是x轴正半轴,终边过点(-2,1),则sin2α=(  )
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知{an}是各项为正数的等比数列,{bn}是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7.
(1)求{an}和{bn}的通项公式;
(2)设cn=anbn,n∈N*,求数列{cn}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知sinα+sinβ=$\frac{1}{4}$,cosα+cosβ=$\frac{1}{3}$,则sin(α+β)=$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.用0,1,2,3,4,5,6可以组成420个无重复数字的四位偶数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,正六边形ABCDEF中,$\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{FE}$=(  )
A.$\overrightarrow 0$B.$\overrightarrow{AD}$C.$\overrightarrow{BE}$D.$\overrightarrow{CF}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.下列说法中,正确的有④⑤.(写出正确的所有序号)
 ①用数学归纳法证明“1+2+22+…+2n+2=2n+3-1,在验证n=1时,左边的式子是1+2=22
②用数学归纳法证明$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+n}$>$\frac{13}{24}$(n∈N*)的过程中,由n=k推导到n=k+1 时,左边增加的项为$\frac{1}{2n+1}$+$\frac{1}{2n+2}$,没有减少的项;
 ③演绎推理的结论一定正确;
 ④($\root{3}{x}$+$\frac{1}{\sqrt{x}}$)18的二项展开式中,共有4个有理项;
⑤从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是$\frac{5}{9}$.

查看答案和解析>>

同步练习册答案