精英家教网 > 高中数学 > 题目详情
15.已知两定点A(-2,0)和B(2,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为(  )
A.$\frac{2}{\sqrt{26}}$B.$\frac{4}{\sqrt{26}}$C.$\frac{2}{\sqrt{13}}$D.$\frac{3}{\sqrt{13}}$

分析 由题意知,要使椭圆C的离心率取最大值,则a取最小值.即|PA|+|PB|取最小值.利用点的对称性求出|PA|+|PB|的最小值即可求解.

解答 解:由题意得,2c=|AB|=4,得c=2.
2a=|PA|+|PB|.
当a取最小值时,椭圆C的离心率有最大值.
设点A(-2,0)关于直线l:y=x+3的对称点为A′(x,y).
则$\left\{\begin{array}{l}{\frac{y}{x+2}=-1}\\{\frac{y}{2}=\frac{x-2}{2}+3}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-3}\\{y=1}\end{array}\right.$.
∴A′(-3,1).
则|PA|+|PB|=|PA′|+|PB|≥|A′B|.
∴2a≥|A′B|=$\sqrt{26}$.
∴当a=$\frac{\sqrt{26}}{2}$时,椭圆有最大离心率.
此时,$\frac{c}{a}=\frac{4}{\sqrt{26}}$,
故选:B.

点评 本题考查椭圆的基本性质,动点到定点距离的最值等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若数列{an}满足a1=18,an+1=an-3,则数列{an}的前n项和数值最大时,n的值为(  )
A.6B.7或8C.6或7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的一条弦被点(1,1)平分,则此弦所在的直线方程是(  )
A.4x-9y+5=0B.9x-4y-5=0C.9x+4y-13=0D.4x+9y-13=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:?x0>0,x02-x0-2=0,则¬p为(  )
A.?x0≤0,x02-x0-2=0B.?x0>0,x02-x0-2=0
C.?x≤0,x2-x-2≠0D.?x>0,x2-x-2≠0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a∈R,函数f(x)=x2(x-a).
(Ⅰ)若函数f(x)在区间(0,$\frac{2}{3}$)内是减函数,求实数a的取值范围;
(Ⅱ)当a=2时,求函数f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合M={x|-1≤x≤2},N={x|log2x>0},则M∪N=(  )
A.[-1,+∞)B.(1,+∞)C.(-1,2)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上存在极值,则实数a的取值范围是(  )
A.[-$\sqrt{3}$,$\sqrt{3}$]B.(-$\sqrt{3}$,$\sqrt{3}$)C.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)D.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)的一个原函数为$\frac{sinx}{1+xsinx}$,求∫f(x)f′(x)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设x1,x2,…,xn的平均数为$\overline{x}$,标准差是s,则另一组数2x1-3,2x2-3,…,2xn-3的平均数和标准差分别是(  )
A.2$\overline{x}$,4sB.2$\overline{x}$-3,4sC.2$\overline{x}$-3,2sD.2$\overline{x}$,s

查看答案和解析>>

同步练习册答案