精英家教网 > 高中数学 > 题目详情
9.若函数f(x)=$\frac{a{x}^{2}-1}{x}$在(2,3)上为增函数,则实数a的取值范围是[$-\frac{1}{9}$,+∞).

分析 若函数f(x)=$\frac{a{x}^{2}-1}{x}$在(2,3)上为增函数,则f′(x)=$\frac{a{x}^{2}+1}{{x}^{2}}$≥0在(2,3)上恒成立,进而得到答案.

解答 解:若函数f(x)=$\frac{a{x}^{2}-1}{x}$在(2,3)上为增函数,
则f′(x)=$\frac{a{x}^{2}+1}{{x}^{2}}$≥0在(2,3)上恒成立,
则9a+1≥0,解得:a∈[$-\frac{1}{9}$,+∞),
故答案为:[$-\frac{1}{9}$,+∞).

点评 本题考查的知识点是函数单调性的性质,函数恒成立,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知实数x、y满足方程x2+y2-4x+1=0.
(1)求$\frac{y}{x}$的最大值和最小值;
(2)求x2+y2的最大值和最小值;
(3)若b=x+y,求b的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,直线l的方程是y=8,圆C的参数方程是$\left\{\begin{array}{l}x=2cosφ\\ y=2+2sinφ\end{array}\right.$(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求直线l和圆C的极坐标方程;
(2)射线OM:θ=α(其中$0<α<\frac{π}{2}$)与圆C交于O、P两点,与直线l交于点M,射线ON:$θ=α+\frac{π}{2}$与圆C交于O、Q两点,与直线l交于点N,求$\frac{|OP|}{|OM|}•\frac{|OQ|}{|ON|}$的最大值;
(3)在(2)的条件下,求三角形OMN的内切圆圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若13sinα+5cosβ=9,13cosα+5sinβ=15,则sin(α+β)的值为(  )
A.$\frac{56}{65}$B.$\frac{33}{65}$C.$\frac{5}{6}$D.$\frac{16}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设f(x)=$\left\{\begin{array}{l}{sin(\frac{π}{2}x+\frac{π}{3})(x≤2010)}\\{f(x-4)(x>2010)}\end{array}\right.$则f(2009)+f(2010)+f(2011)+f(2012)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}中,a1+a4+a7=15,a2•a4•a6=45,求此数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|≠0,且关于x的方程x2+|$\overrightarrow{a}$|x+$\overrightarrow{a}$•$\overrightarrow{b}$=0有两个相等的实根,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=(a2-1)x是其定义域上的单调减函数,则实数a的取值集合为(  )
A.{a|0<a<1}B.$\left\{{\left.a\right|1<a<\sqrt{2}}\right\}$
C.$\left\{{\left.a\right|-\sqrt{2}<a<-1}\right.$或$\left.{1<a<\sqrt{2}}\right\}$D.$\left\{{\left.a\right|-\sqrt{2}<a<\sqrt{2}}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)满足f(x)=f(-x),且当x∈(-∞,0)时,f(x)+xf′(x)<0,a=20.1•f(20.1),b=(ln2)f(ln2),c=(log2$\frac{1}{8}$)f(log2$\frac{1}{8}$),则a,b,c的大小关系是c>a>b.

查看答案和解析>>

同步练习册答案