在ABC中,三个内角A,B,C的对边分别为,且A,B,C成等差数列,成等比数列,求证ABC为等边三角形.
科目:高中数学 来源: 题型:解答题
数列{an}满足a1=1,an+1=(n2+n-λ)an(n=1,2,…),λ是常数.
(1)当a2=-1时,求λ及a3的值.
(2)数列{an}是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知单调递增的等比数列{an}满足:
a2+a3+a4=28,且a3+2是a2和a4的等差中项.
(1)求数列{an}的通项公式an;
(2)令bn=anlogan,Sn=b1+b2+…+bn,求使Sn+n·2n+1>50成立的最小的正整数n.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知首项为的等比数列{an}是递减数列,其前n项和为Sn,且S1+a1,S2+a2,S3+a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)已知,求数列{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知等差数列满足:,该数列的前三项分别加上l,l,3后顺次成为等比数列的前三项.
(I)求数列,的通项公式;
(II)设,若恒成立,求c的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com