精英家教网 > 高中数学 > 题目详情
1.对于数列{an},{bn},Sn为数列{an}是前n项和,且Sn+1-(n+1)=Sn+an+n,a1+b1=2,bn+1=3bn+2,n∈N*
(1)求数列{an},{bn}的通项公式;
(2)令cn=$\frac{2({a}_{n}+n)}{n({b}_{n}+1)}$,求数列{cn}的前n项和Tn

分析 (1)Sn+1-(n+1)=Sn+an+n,可得:an+1-an=2n+1.利用累加求和方法可得:an.由a1+b1=2,可得b1=1.由bn+1=3bn+2,n∈N*.变形为:bn+1+1=3(bn+1).利用等比数列的通项公式即可得出.
(2)由(1)可得:cn=$\frac{2({a}_{n}+n)}{n({b}_{n}+1)}$=$\frac{n+1}{{3}^{n-1}}$.利用错位相减法即可得出.

解答 解:(1)∵Sn+1-(n+1)=Sn+an+n,
∴an+1-an=2n+1.
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=(2n-1)+(2n-3)+…+3+1
=$\frac{n(1+2n-1)}{2}$=n2
由a1+b1=2,∴b1=1.
∵bn+1=3bn+2,n∈N*
∴bn+1+1=3(bn+1).
∴数列{bn+1}是等比数列,公比为3,首项为2.
∴bn+1=2×3n-1,解得bn=2×3n-1-1..
(2)由(1)可得:cn=$\frac{2({a}_{n}+n)}{n({b}_{n}+1)}$=$\frac{n+1}{{3}^{n-1}}$.
∴Tn=2+$\frac{3}{3}+\frac{4}{{3}^{2}}$+…+$\frac{n+1}{{3}^{n-1}}$,
$\frac{1}{3}{T}_{n}$=$\frac{2}{3}$+$\frac{3}{{3}^{2}}$+…+$\frac{n}{{3}^{n-1}}$+$\frac{n+1}{{3}^{n}}$,
相减可得:$\frac{2}{3}{T}_{n}$=2+$\frac{1}{3}+\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n-1}}$-$\frac{n+1}{{3}^{n}}$=1+$\frac{1-\frac{1}{{3}^{n}}}{1-\frac{1}{3}}$-$\frac{n+1}{{3}^{n}}$,
∴Tn=$\frac{15}{4}$-$\frac{2n+5}{4×{3}^{n-1}}$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、错位相减法、数列递推关系、累加求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设集合A={x|x2-x-2<0},集合B={x|-1<x≤1},则A∩B=(  )
A.[-1,1]B.(-1,1]C.(-1,2)D.[1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.利用数学归纳法证明不等式$\frac{1}{n}$+$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$>$\frac{10}{13}$时,由k递推到k+1时,不等式左边应添加的式子是(  )
A.$\frac{1}{2k+1}$B.$\frac{1}{2k+1}$+$\frac{1}{2k+2}$C.$\frac{1}{2k+1}$-$\frac{1}{k}$D.$\frac{1}{2k+1}$+$\frac{1}{2k+2}$-$\frac{1}{k}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若在区间[-1,5]上任取一个数b,则函数f(x)=(x-b-1)ex在(3,+∞)上是单调函数的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知S是△ABC所在平面外的一点,且SA=SB=SC,若S在底面ABC内的射影落在△ABC外部,则△ABC是(  )
A.钝角三角形B.直角三角形C.锐角三角形D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,$a=2\sqrt{2},b=3,A=45°$,则此三角形解的个数为(  )
A.0B.1C.2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=f(x)是定义在(0,+∞)上为增函数,且f(2m)>f(-m+9),则实数m的取值范围是(  )
A.(0,9)B.(3,9)C.(3,+∞)D.(-∞,-3)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\overrightarrow{a}$=(2,-1,4),$\overrightarrow{b}$=(-4,-5,-1),若($\overrightarrow{a}$-k$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则实数k=-$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=x3-x2-x(0<x<2)极小值是(  )
A.0B.-1C.2D.1

查看答案和解析>>

同步练习册答案