精英家教网 > 高中数学 > 题目详情
9.在长方体ABCD-A1B1C1D1中,AB=BC=$\sqrt{2}$AA1,Q是棱CC1上的动点,则当BQ+D1Q的长度取得最小值时,直线B1Q和直线BD所成的角的正切值是$\frac{\sqrt{5}}{2}$.

分析 当BQ+D1Q的长度取得最小值时Q是CC1的中点,以D1为原点,D1A1为x轴,D1C1为y轴,D1D为z轴,建立空间直角坐标系,利用向量法能求出直线B1Q和直线BD所成的角的正切值.

解答 解:设AB=BC=$\sqrt{2}$AA1=$\sqrt{2}$,
把B1C1CB展开与D1C1CD成一个长方形D1B1BD时,
连结D1B,交CC1于Q时,当BQ+D1Q的长度取得最小值,
此时Q是CC1的中点,
以D1为原点,D1A1为x轴,D1C1为y轴,D1D为z轴,建立空间直角坐标系,
则B1($\sqrt{2},\sqrt{2},0$),Q(0,$\sqrt{2}$,$\frac{1}{2}$),B($\sqrt{2},\sqrt{2}$,1),D(0,0,1),
$\overrightarrow{{B}_{1}Q}$=(-$\sqrt{2}$,0,$\frac{1}{2}$),$\overrightarrow{BD}$=(-$\sqrt{2}$,-$\sqrt{2}$,0),
设直线B1Q和直线BD所成角为θ,
则cosθ=$\frac{|\overrightarrow{{B}_{1}Q}•\overrightarrow{BD}|}{|\overrightarrow{{B}_{1}Q}|•|\overrightarrow{BD}|}$=$\frac{2}{\sqrt{\frac{9}{4}}•\sqrt{4}}$=$\frac{2}{3}$,
tanθ=$\frac{\sqrt{5}}{2}$.
故答案为:$\frac{\sqrt{5}}{2}$.

点评 本题考查线线角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,正方形ADMN与矩形ABCD所在的平面相互垂直,AB=2AD=6,点E为线段AB上一点.

(1)若点E是AB的中点,求证:BM∥平面NDE;
(2)若二面角D-CE-M的大小为$\frac{π}{6}$,求出AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线x+y-1=0的倾斜角等于(  )
A.45°B.60°C.120°D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=xlnx(e为无理数,e≈2.718)
(1)求函数f(x)在点(e,f(e))处的切线方程;
(2)设实数$a>\frac{1}{2e}$,求函数f(x)在[a,2a]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=2x2+3x+1的零点是(  )
A.-$\frac{1}{2}$,-1B.$\frac{1}{2}$,1C.$\frac{1}{2}$,-1D.-$\frac{1}{2}$,1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(2-a)(x-1)-2lnx,g(x)=xe1-x(a∈R),
(1)当a=1时,求f(x)的单调区间
(2)若f(x)在$(0\;,\;\frac{1}{2})$上无零点,求a的最小值
(3)若?x0∈(0,e],?x1≠x2∈(0,e],使得f(xi)=g(x0)成立(i=1,2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在△ABC中,点D在BC边上,∠CAD=$\frac{π}{4}$,AC=$\frac{7}{2}$,cos∠ADB=-$\frac{\sqrt{2}}{10}$.
(Ⅰ)求sin∠C的值;
(Ⅱ)若BD=2DC,求边AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.
(1)求男生成绩的中位数及女生成绩的平均值;
(2)如果用分层抽样的方法从“甲部门”人选和“乙部门”人选中共选取5人,再从这5人中选2人,那么至少有一人是“甲部门”人选的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$\sqrt{2\frac{2}{3}}=2\sqrt{\frac{2}{3}}$,$\sqrt{3\frac{3}{8}}=3\sqrt{\frac{3}{8}}$,$\sqrt{4\frac{4}{15}}=4\sqrt{\frac{4}{15}}$,…,若$\sqrt{6\frac{a}{t}}=6\sqrt{\frac{a}{t}}$(a、t∈R*),则a=6,t=35.

查看答案和解析>>

同步练习册答案