分析 利用余弦定理求得丨AC丨,由椭圆的定义可知:丨AC丨+丨BC丨=2a,2c=2,由e=$\frac{c}{a}$,即可求得椭圆的离心率.
解答
解:设丨AB丨=2丨BC丨=2,则丨AC丨2=丨AB丨2+丨BC丨2-2丨AB丨•丨BC丨•cosB=4+1-2×4×1×(-$\frac{1}{2}$)=7,
∴丨AC丨=$\sqrt{7}$,
∵以A、B为焦点的椭圆经过点C,
∴2a=$\sqrt{7}$+1,2c=2
∴e=$\frac{c}{a}$=$\frac{2}{\sqrt{7}+1}$=$\frac{{-1+\sqrt{7}}}{3}$,
故答案为:$\frac{{-1+\sqrt{7}}}{3}$.
点评 本题考查椭圆的标准方程及简单几何性质,考查余弦定理,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1+\sqrt{5}}{2}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\sqrt{5}$ | D. | $\frac{1+\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)•|g(x)|是奇函数 | B. | f(x)+|g(x)|是偶函数 | C. | |f(x)|-g(x)是奇函数 | D. | |f(x)|•g(x)是偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)是偶函数 | B. | f(x)是奇函数 | ||
| C. | |f(x-1)|的图象关于直线x=1对称 | D. | |f(x)+1|的图象关于点(0,1)对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3-\sqrt{3}}{3}$ | B. | $\frac{3}{2}$ | C. | 1-$\sqrt{3}$ | D. | $\sqrt{3}$-1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com