精英家教网 > 高中数学 > 题目详情
12.在如图所示的四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB,E为PB的中点.
(Ⅰ)求证:PD∥平面ACE;
(Ⅱ)求证:PC⊥AE.

分析 (Ⅰ)连接BD交AC与O,连接EO,可得OE∥PD,又OE?平面ACE,PD?平面ACE,即可判定PD∥平面ACE.
(Ⅱ)先证明PA⊥BC,CB⊥AB,可得CB⊥平面PAB,可得CB⊥AE,又AE⊥PB,即可证明AE⊥平面PBC,从而可证PC⊥AE.

解答 (本题满分为12分)证明:(Ⅰ)连接BD交AC与O,连接EO,
∵E,O分别为BP,BD的中点,
∴OE∥PD,
又∵OE?平面ACE,PD?平面ACE,
∴PD∥平面ACE.…4分
(Ⅱ)∵PA⊥平面ABCD,BC?平面ABCD,
∴PA⊥BC,…6分
又∵底面ABCD是矩形,
∴CB⊥AB,
∵PA∩AB=A,
∴CB⊥平面PAB,…8分
又∵AE?平面PAB,
∴CB⊥AE,
又∵PA=AB,E为PB的中点,
∴AE⊥PB,…10分
∵PB∩BC=B,
∴AE⊥平面PBC,
又∵PC?平面PBC,
∴PC⊥AE.…12分

点评 本题主要考查了直线与平面平行的判定,直线与平面垂直的判定和性质,考查了空间想象能力和推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若角α的终边落在直线x+y=0上,则$\frac{sinα}{|cosα|}$+$\frac{|sinα|}{cosα}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{9}=1\begin{array}{l}{\;}{(a>0)}\end{array}$的渐近线方程为$\frac{x}{2}±\frac{y}{3}=0$,则a的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=lg(3x+3-x-a)的值域是R,则a的取值范围是a≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)我们知道,以原点为圆心,r为半径的圆的方程是x2+y2=r2,那么$\left\{\begin{array}{l}{x=rcosθ}\\{y=rsinθ}\end{array}\right.$表示什么曲线?(其中r是正常数,θ在[0,2π)内变化)
(2)在直角坐标系中,$\left\{\begin{array}{l}{x=a+rcosθ}\\{y=b+rsinθ}\end{array}\right.$,表示什么曲线?(其中a、b、r是常数,且r为正数,θ在[0,2π)内变化)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若cosα=$\frac{3}{5}$,tanα<0,则sinα=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=2x的图象在x=0处的切线方程是(  )
A.y=x+1B.y=2x+1C.y=xln2-1D.y=xln2+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}是等差数列,其前n项和为Sn,且满足a1+a5=10,S4=16;数列{bn}满足:b1+3b2+32b3+..
.+3n-1bn=$\frac{n}{3}$,(n∈N*).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱锥A-BCD中,AB⊥平面BCD,BC⊥CD,E,F,G分别是AC,AD,BC的中点.求证:
(I)AB∥平面EFG;
(II)平面EFG⊥平面ABC.

查看答案和解析>>

同步练习册答案