精英家教网 > 高中数学 > 题目详情
4.函数f(x)=2x的图象在x=0处的切线方程是(  )
A.y=x+1B.y=2x+1C.y=xln2-1D.y=xln2+1

分析 求出函数的导数,求得切线的斜率和切点,再由斜截式方程即可得到所求方程.

解答 解:函数f(x)=2x的导数为f′(x)=2xln2,
即有在x=0处的切线斜率为k=2°ln2=ln2,
切点为(0,1),
则在x=0处的切线方程为y=xln2+1.
故选:D.

点评 本题考查导数的运用:求切线的方程,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,正确求导和运用直线方程是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知定点A(0,-4),O为坐标原点,以OA为直径的圆O的方程是(  )
A.(x+2)2+y2=4B.(x+2)2+y2=16C.x2+(y+2)2=4D.x2+(y+2)2=16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的通项公式为an=$\frac{1}{\sqrt{5}}$[($\frac{1+\sqrt{5}}{2}$)n-($\frac{1-\sqrt{5}}{2}$)n],n∈N*.记Sn=C${\;}_{n}^{1}$a1+C${\;}_{n}^{2}$a2+…+C${\;}_{n}^{n}$an
(1)求S1,S2的值;
(2)求所有正整数n,使得Sn能被8整除.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在如图所示的四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB,E为PB的中点.
(Ⅰ)求证:PD∥平面ACE;
(Ⅱ)求证:PC⊥AE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.将函数f(x)=2sin2x的图象向左平移$\frac{π}{3}$个单位后得到函数g(x),则函数g(x)的单调递减区间为[kπ$-\frac{π}{12}$,k$π+\frac{5π}{12}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a>0,b>0,若2是2a与2b的等比中项,则$\frac{1}{a}+\frac{1}{b}$的最小值为(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某学校团委组织了“文明出行,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如下频率分布直方图(其中分组区间为[40,50),[50,60),…,[90,100]),
(1)求成绩在[70,80)的频率,并补全此频率分布直方图;
(2)求这次考试平均分的估计值;
(3)若从成绩在[40,50)和[90,100]的学生中任选两人,求他们的成绩在同一分组区间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=log2(2+x)+log2(2-x).
(Ⅰ)求证:函数f(x)为偶函数;
(Ⅱ)求$f(\sqrt{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在某次飞镖集训中,甲、乙、丙三人10次飞镖成绩的条形图如下所示,则他们三人中成绩最稳定的是丙.

查看答案和解析>>

同步练习册答案