精英家教网 > 高中数学 > 题目详情
9.设a>0,b>0,若2是2a与2b的等比中项,则$\frac{1}{a}+\frac{1}{b}$的最小值为(  )
A.8B.4C.2D.1

分析 根据2是2a与2b的等比中项可得a、b的等量关系,然后直接利用基本不等式可求$\frac{1}{a}+\frac{1}{b}$的最小值即可.

解答 解:∵2是2a与2b的等比中项,
∴2a•2b=4,
∴a+b=2,$\frac{1}{2}$(a+b)=1,
而a>0,b>0,
∴$\frac{1}{a}+\frac{1}{b}$=($\frac{1}{a}+\frac{1}{b}$)($\frac{a}{2}$+$\frac{b}{2}$)=1+$\frac{b}{2a}$+$\frac{a}{2b}$≥1+2$\sqrt{\frac{b}{2a}•\frac{a}{2b}}$=2,
当且仅当a=b=1时取等号.
故选:C.

点评 本题主要考查了基本不等式的应用,以及等比中项的概念,同时考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.2015年9月3号,抗战胜剩70周年纪念活动在北京隆重举行,受到全国瞩目.纪念活动包括纪念大会、阅兵式、招待会和文艺晚会(招待会和文艺晚会算1项活动)等3项.据统计,其中有60名抗战老兵由于身体原因,参加这3项活动的情况如下表:
参加纪念活动项数 0 1 2 3
 所占比例 $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{3}$$\frac{1}{3}$
(1)若从该60名抗战老兵中按照参加项数分层抽样,抽取6人了解情况,再从抽取的6人中选取2人座淡,求这2人至少1人参加了3项活动的概率;
(2)在(1)中所选取的6人中,求参加纪念活动项数的方差;
(3)医疗部门对部分抗战老兵的记忆能力值x和语言能力值y进行了统计分析,得到如下数据:
记忆能力值x 4 6 8 10
 语言能力值y 3 5 68
由表中数据,求得线性回归方程为$\stackrel{∧}{y}$=$\frac{4}{5}$x+$\stackrel{∧}{a}$,若某抗战老兵的记忆能力值为12,求他的语言能力值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=lg(3x+3-x-a)的值域是R,则a的取值范围是a≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若cosα=$\frac{3}{5}$,tanα<0,则sinα=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=2x的图象在x=0处的切线方程是(  )
A.y=x+1B.y=2x+1C.y=xln2-1D.y=xln2+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知关于某设各的使用年限x(单位:年)和所支出的维修费用y(单位:万元)有如下的统计资料,
x23456
y2.23.85.56.57.0
由上表可得线性回归方程$\widehaty=\widehatbx+0.08$,若规定当维修费用y>12时该设各必须报废,据此模型预报该设各使用年限的最大值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}是等差数列,其前n项和为Sn,且满足a1+a5=10,S4=16;数列{bn}满足:b1+3b2+32b3+..
.+3n-1bn=$\frac{n}{3}$,(n∈N*).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=log2(-x2+ax)的图象过点(1,2),则函数f(x)的值域为(-∞,log2$\frac{25}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数是偶函数的是(  )
A.$y=\frac{1}{x}+x$B.y=x3C.$y=\sqrt{x}$D.y=x2+1

查看答案和解析>>

同步练习册答案