精英家教网 > 高中数学 > 题目详情
1.已知数列{an}是等差数列,其前n项和为Sn,且满足a1+a5=10,S4=16;数列{bn}满足:b1+3b2+32b3+..
.+3n-1bn=$\frac{n}{3}$,(n∈N*).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=anbn,求数列{cn}的前n项和Tn

分析 (Ⅰ)通过联立a1+a5=10、S4=16可知首项和公差,进而可知an=2n-1;通过作差可知当n≥2时bn=$\frac{1}{{3}^{n}}$,进而可得结论;
(Ⅱ)通过(I)anbn=(2n-1)$\frac{1}{{3}^{n}}$,进而利用错位相减法计算即得结论.

解答 解:(Ⅰ)依题意,$\left\{\begin{array}{l}{2{a}_{1}+4d=10}\\{4{a}_{1}+6d=16}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=2}\end{array}\right.$,
∴an=1+2(n-1)=2n-1;
∵b1+3b2+32b3+…+3n-1bn=$\frac{n}{3}$,
∴b1+3b2+32b3+…+3n-2bn-1=$\frac{n-1}{3}$(n≥2),
两式相减得:3n-1bn=$\frac{n}{3}$-$\frac{n-1}{3}$=$\frac{1}{3}$,
∴bn=$\frac{1}{{3}^{n}}$(n≥2),
又∵b1=$\frac{1}{3}$满足上式,
∴数列{bn}的通项公式bn=$\frac{1}{{3}^{n}}$;
(Ⅱ)由(I)可知anbn=(2n-1)$\frac{1}{{3}^{n}}$,
则Tn=1•$\frac{1}{3}$+3•$\frac{1}{{3}^{2}}$+…+(2n-1)$\frac{1}{{3}^{n}}$,
$\frac{1}{3}$Tn=1•$\frac{1}{{3}^{2}}$+3•$\frac{1}{{3}^{3}}$+…+(2n-3)$\frac{1}{{3}^{n}}$+(2n-1)$\frac{1}{{3}^{n+1}}$,
两式相减得:$\frac{2}{3}$Tn=$\frac{1}{3}$+2($\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$)-(2n-1)$\frac{1}{{3}^{n+1}}$
=2•$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$-$\frac{1}{3}$-(2n-1)$\frac{1}{{3}^{n+1}}$
=$\frac{2}{3}$[1-(n+1)$\frac{1}{{3}^{n}}$],
∴Tn=1-(n+1)$\frac{1}{{3}^{n}}$.

点评 本题考查数列的通项及前n项和,考查错位相减法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-16x+a.
(1)若f(x)在区间[2a,a+5]上不单调,求实数a的取值范围;
(2)若f(x)在区间[2,9]上存在零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在如图所示的四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB,E为PB的中点.
(Ⅰ)求证:PD∥平面ACE;
(Ⅱ)求证:PC⊥AE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a>0,b>0,若2是2a与2b的等比中项,则$\frac{1}{a}+\frac{1}{b}$的最小值为(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某学校团委组织了“文明出行,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如下频率分布直方图(其中分组区间为[40,50),[50,60),…,[90,100]),
(1)求成绩在[70,80)的频率,并补全此频率分布直方图;
(2)求这次考试平均分的估计值;
(3)若从成绩在[40,50)和[90,100]的学生中任选两人,求他们的成绩在同一分组区间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若复数$\frac{a-3i}{1+i}$(a∈R,i为虚数单位)是纯虚数,则实数a的值为(  )
A.3B.-3C.0D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=log2(2+x)+log2(2-x).
(Ⅰ)求证:函数f(x)为偶函数;
(Ⅱ)求$f(\sqrt{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直线l与抛物线y2=4x相切于点M,与其准线相交于点N,以MN为直径的圆过x轴上一个定点P,则定点P的坐标为(  )
A.(-1,0)B.(1,0)C.(2,0)D.(4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,平面α⊥平面ABC,D为线段AB的中点,|AB|=2$\sqrt{3}$,∠CDB=30°,P为面α内的动点,且P到直线CD的距离为1,则∠APB的最大值为 )
A.60°B.90°C.120°D.150°

查看答案和解析>>

同步练习册答案