精英家教网 > 高中数学 > 题目详情
9.如图,过圆外一点P作直线AB的垂线,垂足为F,交圆于C,E两点,PD切圆于D,连接AD交EP于G.
(1)求证:PD=PG;
(2)若AC=BD,求证:AB=ED.

分析 (1)证明PG=PD,只需证明∠PDG=∠PGD;
(2)证明Rt△BDA≌Rt△ACB,再证明∠DCE为直角,即可证明AB=ED.

解答 证明:(1)∵PD为切线,∴∠PDA=∠DBA,
∵AB为圆的直径,
∴∠BDA=90°,
∵AF⊥EP,
∴∠PFA=90°.
∴∠DBA=∠EGA,
∵∠PGD=∠EGA,
∴∠PDG=∠PGD,
∴PG=PD;
(2)连接BC,DC,则
∵AB为圆的直径,
∴∠BDA=∠ACB=90°,
在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,
∴Rt△BDA≌Rt△ACB,
∴∠DAB=∠CBA,
∵∠DCB=∠DAB,
∴∠DCB=∠CBA,
∴DC∥AB,
∵AB⊥EP,
∴DC⊥EP,
∴∠DCE为直角,
∴ED为圆的直径,
∵AB为圆的直径,
∴AB=ED.

点评 本题考查圆的切线的性质,考查三角形全等的证明,考查直径所对的圆周角为直角,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.以正棱柱两个底面的内切圆面为底面的圆柱叫做它的内切圆柱,以正棱柱两个底面的外接圆面为底面的圆柱叫做它的外接圆柱.
(Ⅰ)求正三棱柱与它的外接圆柱的体积之比;
(Ⅱ)若正三棱柱的高为6cm,其内切圆柱的体积为24πcm3,求正三棱柱的底面边长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.3${\;}^{\frac{1}{3}}$+$\frac{i}{({3}^{\frac{1}{3}}-i)^{3}}$=$\frac{10+10•{3}^{\frac{1}{3}}+6•{3}^{\frac{2}{3}}}{10+9•{3}^{\frac{1}{3}}+3•{3}^{\frac{2}{3}}}$$+\frac{3-3•{3}^{\frac{1}{3}}}{10+9•{3}^{\frac{1}{3}}+3•{3}^{\frac{2}{3}}}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在长方体ABCD-A1B1C1D1中,AA1=1,AB=BC=2,若M为四面体C1BCD内的点(包含边界),则直线A1M与平面A1B1C1D1所成角的余弦值的余弦的最小值为(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.($\frac{2+2i}{\sqrt{3}-i}$)7-($\frac{2-2i}{1+\sqrt{3}i}$)7=$(-8\sqrt{3}-8)+(8\sqrt{3}-8)i$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某企业开发了一种新产品,为尽快打开市场,市场部针对该产品的销售价位调查了2000人,并把该产品的销售价位画成如图所示的频率分布直方图,为制定具体的销售价格,计划用分层抽样的方法从调查的人中抽出n人作进一步调查,已知心理销售价位定位于30元至35元之间的人数为12,则n=80.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx,g(x)=$\frac{1}{2}$x2+mx+$\frac{7}{2}$(m<0),直线l与函数f(x)、g(x)的图象都相切,且与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及m的值;
(2)当0<b<a时,求证:f(a+b)-f(2a)<$\frac{b-a}{2a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)在[0,+∞)上是单调函数且y=f(x+1)的图象关于直线x=-1对称,则方程f(x)=f(x+$\frac{3}{x+4}$)的所有实数根的和-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在正方形ABCD-A1B1C1D1中,Q是CC1的中点,F是侧面BCB1C1内的动点且A1F∥平面D1AQ,则A1F与平面BCB1C1所成角的正切值得取值范围为[2,2$\sqrt{2}$].

查看答案和解析>>

同步练习册答案