精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=1,a2=5,an+2=an+1-an,则a20=
 
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:由已知结合递推式分别求出数列的前7项,可以发现数列的项以6为周期周期出现,由此可得答案.
解答: 解:由a1=1,a2=5,an+2=an+1-an,得:
a3=a2-a1=5-1=4.
a4=a3-a2=4-5=-1.
a5=a4-a3=-1-4=-5.
a6=a5-a4=-5-(-1)=-4.
a7=a6-a5=-4-(-5)=1.

由上可知,数列{an}中的项以6为周期周期出现,
∴a20=a3×6+2=a2=5.
故答案为:5.
点评:本题考查了数列递推式,关键是求出数列的周期,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C、D的点,AE=3,正方形的边长为3
5

(1)判断直线BO与直线AE是否平行,只写出结果,不要求说明理由;
(2)求证:CD⊥平面ADE;
(3)求二面角B-DE-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知圆O的直径AB=
6
,C为圆O上一点,且BC=
2
,过点B的切线交AC延长线于点D,则DB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若b2sin2C+c2sin2B=2bccosBcosC,则△ABC是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=|
b
|=λ|
a
+
b
|,且实数λ∈[
3
3
,1],则
b
a
-
b
的夹角取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在复数范围内,方程x2-x+1=0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

“点M在曲线y2=4x上”是“点M的坐标满足方程y=-2
x
”的
 
 条件.(填充分不必要条件、必要不充分条件、充要条件)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log3(x2-2x)的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果复数z满足条件z+|z|=3+i,那么z等于(  )
A、
4
3
-i
B、-
4
3
+i
C、-
4
3
-i
D、
4
3
+i

查看答案和解析>>

同步练习册答案