精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=x2-(2-a)x-(2-a)lnx..
(1)若a=1,求函数f(x)的极值;
(2)若f(x)在其定义域内为增函数,求实数a的取值范围.

分析 (1)求出函数的导数,利用导数为0,求解极值点,然后判断求解极值即可.
(2)利用导函数的符号,结合基本不等式或函数的导数求解函数的最值,推出结果即可.

解答 解:(1)∵f(x)=x2-(2-a)x-(2-a)lnx,x>0
∴$f'(x)=2x-(2-a)-\frac{2-a}{x}=\frac{{2{x^2}-(2-a)x-(2-a)}}{x}$,
因为a=1,令$f'(x)=\frac{{2{x^2}-x-1}}{x}$=0得x=1或x=$-\frac{1}{2}$(舍去)…(3分)
又因为,当0<x<1时,f'(x)<0;x>1时,f'(x)>0
所以x=1时,函数f(x)有极小值f(1)=0…(6分)
(2)若f'(x)>0,在x>0上恒成立,则2x2-(2-a)x-(2-a)>0恒成立,
∴$a>\frac{{-2{x^2}+2x+2}}{x+1}=6-2[{(x+1)+\frac{1}{x+1}}]$恒成立…(9分)
而当x>0时∵$[{(x+1)+\frac{1}{x+1}}]>2$.
检验知,a=2时也成立∴a≥2…(12分)
[或:令$g(x)=\frac{{-2{x^2}+2x+2}}{x+1}$,∴$g'(x)=\frac{-2x(x+2)}{{{{(x+1)}^2}}}$,∵x>0,∴g'(x)<0-----(9分)
所以,函数g(x)在定义域上为减函数
所以g(x)<g(0)=2
检验知,a=2时也成立∴a≥2…(12分).

点评 本题考查函数的导数的综合应用,函数的极值以及函数的单调性与函数的最值的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若ln(x+1)-1≤ax+b对任意x>-1的恒成立,则$\frac{b}{a}$的最小值是1-e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已和命题P:函数y=logax在定义域上单调递减;$Q:\frac{a-2}{a+2}≤0$,若P∨Q是假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2-2ax+4
(1)求函数y=f(x),x∈[0,2]的最小值
(2)若对任意x1,x2∈[0,2],都有|f(x1)-f(x2)|<4恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,
(1)求由$\left\{\begin{array}{l}0≤x≤\frac{5π}{12}\\ 0≤y≤f(x)\end{array}$,确定的区域的面积;
(2)如何由函数y=sinx的图象通过相应的平移与伸缩变换得到函数f(x)的图象,写出变换过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{{2}^{x}+\frac{a}{{2}^{x}}-2}$.
(1)若f(x)的定义域为R,求实数a的取值范围;
(2)若f(x)的值域为[0,+∞),求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若log2x=-log2(2y),则x+2y的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某零件的正视图与侧视图均是如图所示的图形(实线组成半径为2cm的半圆,虚线是底边上高为1cm的等腰三角形的两腰),俯视图是一个半径为2cm的圆(包括圆心),则该零件的体积是(  )
A.$\frac{4}{3}πc{m^3}$B.$\frac{8}{3}πc{m^3}$C.4πcm3D.$\frac{20}{3}πc{m^3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知△ABC的顶点A(2,0),B(0,4),且AC=BC,则△ABC的欧拉线方程为x-2y+3=0(用直线方程的一般式表示)

查看答案和解析>>

同步练习册答案