精英家教网 > 高中数学 > 题目详情
10.在等差数列{an}中,a1=-60,a17=-12,
(1)求通项an;          
(2)求此数列的前33项和S33

分析 (1)利用等差数列通项公式求出公差d=3,由此能求出通项an
(2)利用等差数列通项公式能求出此数列的前33项和.

解答 解:(1)∵等差数列{an}中,a1=-60,a17=-12,
∴a17=-60+16d=-12,
解得d=3,
∴an=-60+(n-1)×3=3n-63.
(2)∵等差数列{an}中,a1=-60,d=3,
∴此数列的前33项和:
S33=33×(-60)+$\frac{33×32}{2}×3$=-396.

点评 本题考查等差数列的通项公式的求法,考查等差数列的前33项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=6,$\overrightarrow{a}$•($\overrightarrow{b}$-$\overrightarrow{a}$)=2.
(1)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角;
(2)求|2$\overrightarrow{a}$-$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.奇函数f(x)在区间[1,3]上是单调递减函数,则函数f(x)在区间[-3,-1]上是(  )
A.单调递减函数,且有最小值-f(1)B.单调递减函数,且有最大值-f(1)
C.单调递增函数,且有最小值f(1)D.单调递增函数,且有最大值f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xoy中,以O为极点,x轴非负半轴为极轴建立坐标系,已知曲线C的极坐标方程为ρsin2θ=4cosθ,直线l的参数方程为:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),两曲线相交于M,N两点.
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)若P(-2,-4),线段MN的中点为Q,求P点到Q点距离|PQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(-$\sqrt{3}$,x),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥P-ABCD的底面ABCD为菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E为PA的中点.
(1)求证:PC∥平面EBD;
(2)在侧棱PC上是否存在一点M,满足PC⊥平面MBD,若存在,求PM的长;若不存在,说明理由.
(3)求三棱锥C-PAD的体积VC-PAD

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,角A,B,C所对的边分别为a、b、c.若$sinB+cosB=\sqrt{2}$,a=$\sqrt{2}$,b=2,则角A的大小为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.⊙c:x2+y2-2ax-2(2a-1)y+4(a-1)=0,其中a∈R,
(1)当a变化时,求圆心的轨迹方程,
(2)证明⊙c过定点,
(3)求面积最小的⊙c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求函数y=-x(x-a)在x∈[-1,1]上的最大值.

查看答案和解析>>

同步练习册答案