分析 (1)根据x=ρcosθ、y=ρsinθ,写出曲线C的直角坐标方程;用代入法消去参数求得直线l的普通方程.
(2)由点P是直线l上的一点、韦达定理求得|PQ|的长度.
解答 解:(1)曲线C:y2=4x直线l:x-y-2=0.
(2)可知P在直线l上,将$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$代入y2=4x得${t^2}-12\sqrt{2}t+48=0$,
设M、N对应的参数分别为t1,t2可得${t_1}+{t_2}=12\sqrt{2},{t_1}{t_2}=48>0$,
∴$|{PQ}|=\frac{{|{{t_1}+{t_2}}|}}{2}=6\sqrt{2}$.
点评 本题主要考查把参数方程、极坐标化为直角坐标方程的方法,参数的几何意义,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com