分析 2Sn=(n+1)an,利用n≥2时,2an=2Sn-2Sn-1,化为:$\frac{{a}_{n}}{n}=\frac{{a}_{n-1}}{n-1}$.可得$\frac{{a}_{n}}{n}$=$\frac{{a}_{n-1}}{n-1}$=…=$\frac{{a}_{2}}{2}=\frac{{a}_{1}}{1}$=1.因此an=n.不等式$a_n^2-t{a_n}-2{t^2}<0$(t>0),即n2-nt-2t2<0,解得t$>\frac{n}{2}$.根据存在唯一的正整数n使得不等式$a_n^2-t{a_n}-2{t^2}<0$(t>0)成立即可得出.
解答 解:∵2Sn=(n+1)an,∴n≥2时,2an=2Sn-2Sn-1=(n+1)an-nan-1,化为:$\frac{{a}_{n}}{n}=\frac{{a}_{n-1}}{n-1}$.
∴$\frac{{a}_{n}}{n}$=$\frac{{a}_{n-1}}{n-1}$=…=$\frac{{a}_{2}}{2}=\frac{{a}_{1}}{1}$=1.
∴an=n.
不等式$a_n^2-t{a_n}-2{t^2}<0$(t>0),即n2-nt-2t2<0,∴(2t-n)(t+n)>0,
解得t$>\frac{n}{2}$.
∵存在唯一的正整数n使得不等式$a_n^2-t{a_n}-2{t^2}<0$(t>0)成立,
∴n只能取1,因此$\frac{1}{2}<t≤$1..
故答案为:$({\frac{1}{2},1}]$.
点评 本题考查了数列递推关系、数列的通项公式、不等式的解法、恒成立问题的等价转化方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $x<\frac{21}{2}$ | B. | $-\frac{6}{7}<x<\frac{21}{2}$ | C. | $x<\frac{6}{7}$ | D. | $x<\frac{21}{2}$且$x≠-\frac{6}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 单调递减函数,且有最小值-f(1) | B. | 单调递减函数,且有最大值-f(1) | ||
| C. | 单调递增函数,且有最小值f(1) | D. | 单调递增函数,且有最大值f(1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com