精英家教网 > 高中数学 > 题目详情

已知双曲线C1与抛物线C2:y2=8x有相同的焦点F,它们在第一象限内的交点为M,若双曲线C1的焦距为实轴长的2倍,则|MF|=________.

 

5

【解析】易知抛物线的焦点为(2,0),设双曲线为=1(a>0,b>0),由题意知c=2,2c=4a.则a=1,b2=c2-a2=3,双曲线C1的方程为x2-=1.与y2=8x联立可解得x=3,或x=- (舍去).所以xM=3.结合抛物线的定义可得|MF|=xM+2=5.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:选4-1-2直线与圆的位置关系(解析版) 题型:填空题

如图所示,AB是⊙O的直径,直线CB切⊙O于点B,直线CD切⊙O于点D,CD交BA的延长线于点E.若AB=3,ED=2,则BC的长为________.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:9-2用样本估计总体(解析版) 题型:填空题

为了调查学生每天零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.某市抽取1000名年龄在[2,22](单位:岁)内的学生每天的零花钱,样本的频率分布直方图如图所示,则样本数据落在[6,14)内的频数为________.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:9-1随机抽样(解析版) 题型:选择题

某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是(  )

A.4 B.5 C.6 D.7

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-9圆锥曲线的综合问题(解析版) 题型:填空题

若C(-,0),D(,0),M是椭圆+y2=1上的动点,则的最小值为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-9圆锥曲线的综合问题(解析版) 题型:选择题

若双曲线=1(a>b>0)的左、右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的焦点分成7∶5的两段,则此双曲线的离心率为(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-8曲线与方程(解析版) 题型:选择题

设A1,A2是椭圆=1的长轴两个端点,P1,P2是垂直于A1A2的弦的端点,则直线A1P1与A2P2交点的轨迹方程为(  )

A.=1 B.=1

C.=1 D.=1

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-7抛物线(解析版) 题型:解答题

已知顶点在坐标原点,焦点在x轴正半轴的抛物线上有一点A(,m),A点到抛物线焦点的距离为1.

(1)求该抛物线的方程;

(2)设M(x0,y0)为抛物线上的一个定点,过M作抛物线的两条互相垂直的弦MP,MQ,求证:PQ恒过定点(x0+2,-y0).

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-5椭圆(解析版) 题型:选择题

已知椭圆C:=1(b>0),直线l:y=mx+1,若对任意的m∈R,直线l与椭圆C恒有公共点,则实数b的取值范围是(  )

A.[1,4) B.[1,+∞)

C.[1,4)∪(4,+∞) D.(4,+∞)

 

查看答案和解析>>

同步练习册答案