17£®Ä³ÊýѧÑо¿ÐÔѧϰС×飬ÔÚÑо¿ÈçÏÂÎÊÌ⣺¡°Ä³ÉÙÊýÃñ×åµÄ´ÌÐåÓÐ×ÅÓÆ¾ÃµÄÀúÊ·£¬ÈçͼÖУ¨1£©¡¢£¨2£©¡¢£¨3£©¡¢£¨4£©ÎªËýÃÇ´ÌÐå×î¼òµ¥µÄËĸöͼ°¸£¬ÕâЩͼ°¸¶¼ÓÉСÕý·½Ðι¹³É£¬Ð¡Õý·½ÐÎÊýÔ½¶à´ÌÐåԽƯÁÁ£¬ÏÖ°´Í¬ÑùµÄ¹æÂÉ´ÌÐ壨СÕý·½ÐεİڷŹæÂÉÏàͬ£©£¬ÉèµÚn¸öͼÐΰüº¬f£¨n£©¸öСÕý·½ÐΣ¬Çóf£¨n£©£®¡±
¼×С×éµÄ·½°¸ÊÇ£ºÏȼÆËãf£¨1£©£¬f£¨2£©£¬f£¨3£©£¬f£¨4£©£¬f£¨5£©£»ÔÙ¼ÆËãf£¨2£©-f£¨1£©£¬f£¨3£©-f£¨2£©£¬f£¨4£©-f£¨3£©£¬f£¨5£©-f£¨4£©£»½ø¶ø²ÂÏëf£¨n+1£©-f£¨n£©µÄ¹ØÏµÊ½£¨²»ÒªÖ¤Ã÷£©£»ÔÙÀûÓÃÀÛ¼Ó·¨ÇóµÃf£¨n£©£»
ÒÒС×éµÄ·½°¸ÊÇ£º×¢Òâµ½¸Ã´ÌÐåµÄͼ°¸´Ó×óµ½ÓÒ£¬¸÷ÁÐÖеÄСÕý·½ÐÎͼ°¸¹ØÓÚÖмäÒ»ÁеÄСÕý·½ÐÎͼ°¸×óÓҶԳƣ¬¾Ý´Ë£¬´Ó×óµ½ÓÒ£¬°´¸÷ÁеÄСÕý·½ÐÎÊý£¬ÏÈÁгöf£¨n£©µÄÇóºÍµÄʽ×Ó£¬ÔÙ¶ÔÖ®ÇóºÍ£»ÏÖÇëÄãÈÎÑ¡ÆäÖеÄÒ»ÖÖ·½°¸£¬¼ÆËãf£¨n£©£®£¨×¢Ò⣺±ØÐëÍê³É·½°¸ÖеÄÿһ¸ö²½Ö裩

·ÖÎö ×ܽáÒ»°ãÐԵĹæÂÉ£ºf£¨n+1£©Óëf£¨n£©µÄ¹ØÏµÊ½£¬ÔÙ´Ó×ܽá³öÀ´µÄÒ»°ãÐԵĹæÂÉת»¯ÎªÌØÊâµÄÊýÁÐÔÙÇó½â¼´µÃ£®

½â´ð ½â£º¸ù¾Ý¼×µÄ·½°¸£º
¡ßf£¨1£©=1£¬f£¨2£©=5£¬f£¨3£©=13£¬f£¨4£©=25£¬f£¨5£©=41£¬
¡àf£¨2£©-f£¨1£©=4=4¡Á1£®
f£¨3£©-f£¨2£©=8=4¡Á2£¬
f£¨4£©-f£¨3£©=12=4¡Á3£¬
f£¨5£©-f£¨4£©=16=4¡Á4£¬
ÓÉÉÏʽ¹æÂɵóöf£¨n+1£©-f£¨n£©=4n£¬
¡àf£¨2£©-f£¨1£©=4¡Á1£¬
f£¨3£©-f£¨2£©=4¡Á2£¬
f£¨4£©-f£¨3£©=4¡Á3£¬
¡­
f£¨n-1£©-f£¨n-2£©=4•£¨n-2£©£¬
f£¨n£©-f£¨n-1£©=4•£¨n-1£©£¬
¡àf£¨n£©-f£¨1£©=4[1+2+¡­+£¨n-2£©+£¨n-1£©]=2£¨n-1£©•n£¬
¡àf£¨n£©=2n2-2n+1£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¹éÄÉÍÆÀí£¬Æä»ù±¾Ë¼Â·ÊÇÏÈ·ÖÎö¾ßÌ壬¹Û²ì£¬×ܽáÆäÄÚÔÚÁªÏµ£¬µÃµ½Ò»°ãÐԵĽáÂÛ£¬ÈôÇó½âµÄÏîÊý½ÏÉÙ£¬¿ÉÒ»Ö±ÍÆÀí³ö½á¹û£¬ÈôÏîÊý½Ï¶à£¬ÔòÒªµÃµ½Ò»°ãÇó½â·½·¨£¬ÔÙÇó¾ßÌåÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÇúÏßg£¨x£©=2cos£¨x+$\frac{¦Ð}{3}$£©ÓëÖ±Ïßy=0£¬x=-$\frac{¦Ð}{3}$£¬x=$\frac{¦Ð}{6}$ËùΧ³ÉµÄÆ½ÃæÍ¼ÐεÄÃæ»ýΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Èôsin£¨$¦Á+\frac{¦Ð}{4}$£©=$\sqrt{2}$£¨sin¦Á+2cos¦Á£©£¬Ôòsin2¦Á=£¨¡¡¡¡£©
A£®-$\frac{4}{5}$B£®$\frac{4}{5}$C£®-$\frac{3}{5}$D£®$\frac{3}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÓÉ¡°ÈôÊýÁÐ{an}ΪµÈ²îÊýÁУ¬ÔòÓÐ$\frac{{a}_{6}+{a}_{7}+¡­+{a}_{10}}{5}$=$\frac{{a}_{1}+{a}_{2}+¡­+{a}_{15}}{15}$³ÉÁ¢¡±Àà±È¡°ÈôÊýÁÐ{bn}ΪÕýÏîµÈ±ÈÊýÁУ¬ÔòÓÐ$\root{5}{{{b}_{6}b}_{7}••{•b}_{10}}$=$\root{15}{{{{b}_{1}b}_{2}b}_{3}••{•b}_{15}}$³ÉÁ¢¡±£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Éè¾ØÕóA=$[\begin{array}{l}{m}&{0}\\{0}&{n}\end{array}]$£¬Èô¾ØÕóAµÄÊôÓÚÌØÕ÷Öµ1µÄÒ»¸öÌØÕ÷ÏòÁ¿Îª$[\begin{array}{l}{1}\\{0}\end{array}]$£¬ÊôÓÚÌØÕ÷Öµ2µÄÒ»¸öÌØÕ÷ÏòÁ¿Îª$[\begin{array}{l}{0}\\{1}\end{array}]$£¬Çó¾ØÕóA£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Éè$[{\begin{array}{l}2\\ 3\end{array}}]$ÊǾØÕó$M=[{\begin{array}{l}a&2\\ 3&2\end{array}}]$µÄÒ»¸öÌØÕ÷ÏòÁ¿£®
£¨1£©ÇóʵÊýaµÄÖµ£»
£¨2£©Çó¾ØÕóMµÄÌØÕ÷Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÊýÁÐ{an}µÄǰnÏîºÍΪSn=2n+1-2
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ
£¨¢ò£©Èôbn=$\frac{{2}^{n}}{n£¨n+1£©{a}_{n}}$£¨n¡ÊN*£©£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªÖ±Ïßl£º$\sqrt{5}$x-3ycos¦È-1=0µÄÇãб½ÇΪ¦È£¨$¦È£¾\frac{¦Ð}{2}$£©£¬ÔòÖ±ÏßlµÄбÂÊΪ-$\frac{\sqrt{5}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÁâÐÎABCDÖУ¬¡ÏA=60¡ã£¬ÑØBDÕÛ³ÉÖ±¶þÃæ½ÇA-BD-C£¬¹ýµãA×÷PA¡ÍÆ½ÃæABD£¬Á¬½ÓAC¡¢PC¡¢PD£®
£¨¢ñ£©ÇóÖ¤£ºPA¡ÎÆ½ÃæBCD£»
£¨¢ò£©Çó¶þÃæ½ÇA-BC-DµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸