15£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÓÒ½¹µãF¹ØÓÚÖ±Ïßx-2y=0¶Ô³ÆµÄµãÔÚÔ²x2+y2=4ÉÏ£®
£¨1£©Çó´ËÍÖÔ²µÄ·½³Ì£®
£¨2£©ÉèMÊÇÍÖÔ²CÉÏÒìÓÚ³¤Öá¶ËµãµÄÈÎÒâÒ»µã£¬ÊÔÎÊÔÚxÖáÉÏÊÇ·ñ´æÔÚÁ½¸ö¶¨µãA¡¢B£¬Ê¹µÃÖ±ÏßMA¡¢MBµÄбÂÊÖ®»ýΪ¶¨Öµ£¿Èô´æÔÚ£¬ÔòÇó³öÕâÁ½¸ö¶¨µã¼°¶¨Öµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÓÒ½¹µãF£¨c£¬0£©¹ØÓÚÖ±Ïßx-2y=0¶Ô³ÆµÄµã$£¨\frac{3c}{5}£¬\frac{4c}{5}£©$ÔÚÔ²x2+y2=4ÉÏ£®´úÈë¼´¿ÉµÃ³öc£¬ÔÙÀûÓÃ$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬a2=b2+c2£®¼´¿ÉµÃ³ö£®
£¨2£©ÉèA£¨s£¬0£©£¬B£¨t£¬0£©£¬M£¨x0£¬y0£©£®ÔòkMA•kMB=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-£¨s+t£©{x}_{0}+st}$£¬ÓÉÓÚ${y}_{0}^{2}=4£¨1-\frac{{x}_{0}^{2}}{8}£©$£¬¿ÉµÃkMA•kMB=$\frac{8-{x}_{0}^{2}}{2[{x}_{0}^{2}-£¨s+t£©{x}_{0}+st]}$£¬ÒªÊ¹ÉÏÊöֵΪ¶¨Öµ£¬Ôò±ØÓУºs+t=0£¬st=-8£¬¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÉèÓÒ½¹µãF£¨c£¬0£©¹ØÓÚÖ±Ïßx-2y=0¶Ô³ÆµÄµãP£¨m£¬n£©£¬Ôò$\left\{\begin{array}{l}{\frac{m+c}{2}-2¡Á\frac{y+0}{2}=0}\\{\frac{n}{m-c}¡Á\frac{1}{2}=-1}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{m=\frac{3c}{5}}\\{n=\frac{4c}{5}}\end{array}\right.$£¬
¡ßµãP$£¨\frac{3c}{5}£¬\frac{4c}{5}£©$ÔÚÔ²x2+y2=4ÉÏ£®
¡à$£¨\frac{3c}{5}£©^{2}+£¨\frac{4c}{5}£©^{2}$=4£¬½âµÃc=2£®
¡ß$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬¡àa2=8£¬b2=4£®
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$£®
£¨2£©ÉèA£¨s£¬0£©£¬B£¨t£¬0£©£¬M£¨x0£¬y0£©£®
ÔòkMA•kMB=$\frac{{y}_{0}}{{x}_{0}-s}•\frac{{y}_{0}}{{x}_{0}-t}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-£¨s+t£©{x}_{0}+st}$£¬
¡ß${y}_{0}^{2}=4£¨1-\frac{{x}_{0}^{2}}{8}£©$£¬
¡àkMA•kMB=$\frac{8-{x}_{0}^{2}}{2[{x}_{0}^{2}-£¨s+t£©{x}_{0}+st]}$£¬
ҪʹÉÏÊöֵΪ¶¨Öµ£¬Ôò±ØÓУºs+t=0£¬st=-8£¬
½âµÃs=-t=¡À2$\sqrt{2}$£®
¡à¿ÉÈ¡A$£¨-2\sqrt{2}£¬0£©$£¬B$£¨2\sqrt{2}£¬0£©$£®
ÔòkMA•kMB=-$\frac{1}{2}$=-$\frac{{b}^{2}}{{a}^{2}}$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ð±ÂʼÆË㹫ʽ¡¢¶¨ÖµÎÊÌâ¡¢µã¶Ô³ÆÎÊÌâ¡¢´¹Ö±Æ½·ÖÏßÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬²»µÈʽ×é$\left\{\begin{array}{l}{x¡Ý0}\\{y¡Ý0}\\{x+y-8¡Ü0}\end{array}\right.$Ëù±íʾµÄÆ½ÃæÇøÓòÊǦÁ£¬²»µÈʽ×é$\left\{\begin{array}{l}0¡Üx¡Ü4\\ 0¡Üy¡Ü10\end{array}\right.$Ëù±íʾµÄÆ½ÃæÇøÓòΪ¦Á£¬ÔÚÇøÓò¦ÁÄÚËæ»úȡһµãP£¬ÔòµãPÂäÔÚÇøÓò¦ÂÄڵĸÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{3}{5}$C£®$\frac{1}{5}$D£®$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Ò»¸öºÐÖÐÓÐ6¸öÇò£¬ÆäÖкìÇò2¸ö£¬ºÚÇò3¸ö£¬°×Çò1¸ö£¬ÏÖ´ÓÖÐÈÎÈ¡3¸öÇò£¬ÓÃÁоٷ¨ÇóÏÂÁÐʼþµÄ¸ÅÂÊ£º
£¨1£©ÇóÈ¡³ö3¸öÇòÊDz»Í¬ÑÕÉ«µÄ¸ÅÂÊ£®
£¨2£©Ç¡ÓÐÁ½¸öºÚÇòµÄ¸ÅÂÊ£®
£¨3£©ÖÁÉÙÓÐÒ»¸öºÚÇòµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ä³ÊÐΪÁËÖÎÀíÎÛȾ£¬¸ÄÉÆ¿ÕÆøÖÊÁ¿£¬Êл·¾³±£»¤¾Ö¾ö¶¨Ã¿ÌìÔÚ³ÇÇøÖ÷Ҫ·¶ÎÈ÷Ë®·À³¾£¬ÎªÁ˸øÈ÷Ë®³µ¹©Ë®£¬¹©Ë®²¿Ãžö¶¨×î¶àÐÞ½¨3´¦¹©Ë®Õ¾£®¸ù¾Ý¹ýÈ¥30¸öÔµÄ×ÊÁÏÏÔʾ£¬Ã¿ÔÂÈ÷Ë®Á¿X£¨µ¥Î»£º°ÙÁ¢·½Ã×£©ÓëÆøÎºͽµÓêÁ¿Óйأ¬ÇÒÿÔµÄÈ÷Ë®Á¿¶¼ÔÚ20ÒÔÉÏ£¬ÆäÖв»×ã40µÄÔ·ÝÓÐ10¸öÔ£¬²»µÍÓÚ40ÇÒ²»³¬¹ý60µÄÔ·ÝÓÐ15¸öÔ£¬³¬¹ý60µÄÔ·ÝÓÐ5¸öÔ£®½«ÔÂÈ÷Ë®Á¿ÔÚÒÔÉÏÈý¶ÎµÄƵÂÊ×÷ΪÏàÓ¦µÄ¸ÅÂÊ£¬²¢¼ÙÉè¸÷ÔµÄÈ÷Ë®Á¿Ï໥¶ÀÁ¢£®
£¨¢ñ£©ÇóδÀ´µÄ3¸öÔÂÖУ¬ÖÁ¶àÓÐ1¸öÔµÄÈ÷Ë®Á¿³¬¹ý60µÄ¸ÅÂÊ£»
£¨¢ò£©¹©Ë®²¿ÃÅÏ£ÍûÐÞ½¨µÄ¹©Ë®Õ¾¾¡¿ÉÄÜÔËÐУ¬µ«Ã¿Ô¹©Ë®Õ¾ÔËÐеÄÊýÁ¿ÊÜÔÂÈ÷Ë®Á¿ÏÞÖÆ£¬ÓÐÈçϹØÏµ£º
ÔÂÈ÷Ë®Á¿20£¼X£¼4040¡ÜX¡Ü60X£¾60
¹©Ë®Õ¾ÔËÐеÄ×î¶àÊýÁ¿123
Èôij¹©Ë®Õ¾ÔËÐУ¬ÔÂÀûÈóΪ12000Ôª£»Èôij¹©Ë®Õ¾²»ÔËÐУ¬Ô¿÷Ëð6000Ôª£®Óûʹ¹©Ë®Õ¾µÄÔÂ×ÜÀûÈóµÄ¾ùÖµ×î´ó£¬Ó¦ÐÞ½¨¼¸´¦¹©Ë®Õ¾£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1µÄÓÒ½¹µãΪF£¬¹ýFµÄÖ±Ïßl½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬ÇÒ$\frac{5}{2}$¡Ü|AF|•|BF|$¡Ü\frac{11}{4}$£¬ÇóÖ±ÏßlµÄбÂÊkµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÔÚ¶àÃæÌåABCDEFÖУ¬Æ½ÃæADEF¡ÍÆ½ÃæABCD£¬AB¡ÎDC£¬ADEFÊÇÕý·½ÐΣ¬ÒÑÖªBD=2AD=2£¬AB=2DC=$\sqrt{5}$£®
£¨1£©Ö¤Ã÷£ºÆ½ÃæBDF¡ÍÆ½ÃæADEF£»
£¨2£©Çó¶þÃæ½ÇD-BE-CµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÍƵ¼Ö±ÏßAx+By+C=0£¨A2+B2¡Ù0£©ÓëÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÏàÇУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=lnx+mx2£¨m¡ÊR£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Èôm=0£¬A£¨a£¬f£¨a£©£©£¬B£¨b£¬f£¨b£©£©ÊǺ¯Êýf£¨x£©Í¼ÏóÉϲ»Í¬µÄÁ½µã£¬ÇÒa£¾b£¾0£¬f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬ÇóÖ¤£ºf¡ä£¨$\frac{a+b}{2}$£©£¼$\frac{f£¨a£©-f£¨b£©}{a-b}$£¼f¡ä£¨b£©£»
£¨3£©ÇóÖ¤£º$\frac{2}{3}$+$\frac{2}{5}$+¡­+$\frac{2}{2n+1}$£¼ln£¨n+1£©£¼1+$\frac{1}{2}$+¡­+$\frac{1}{n}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄ¸÷Ï²»ÏàµÈ£¬Ç°Á½ÏîµÄºÍΪ10£¬ÉèÏòÁ¿$\overrightarrow{m}$=£¨a1£¬a3£©£¬$\overrightarrow{n}$=£¨a3£¬a7£©£¬ÇÒ$\overrightarrow{m}¡Î\overrightarrow{n}$£»
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}Âú×ãbn=£¨$\sqrt{2}$£©${\;}^{{a}_{n}-2}$£¬n¡ÊN*£¬ÇóÊýÁÐ{$\frac{1}{{{b}_{n}}^{2}}$}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸