·ÖÎö £¨1£©ÓÉÓÒ½¹µãF£¨c£¬0£©¹ØÓÚÖ±Ïßx-2y=0¶Ô³ÆµÄµã$£¨\frac{3c}{5}£¬\frac{4c}{5}£©$ÔÚÔ²x2+y2=4ÉÏ£®´úÈë¼´¿ÉµÃ³öc£¬ÔÙÀûÓÃ$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬a2=b2+c2£®¼´¿ÉµÃ³ö£®
£¨2£©ÉèA£¨s£¬0£©£¬B£¨t£¬0£©£¬M£¨x0£¬y0£©£®ÔòkMA•kMB=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-£¨s+t£©{x}_{0}+st}$£¬ÓÉÓÚ${y}_{0}^{2}=4£¨1-\frac{{x}_{0}^{2}}{8}£©$£¬¿ÉµÃkMA•kMB=$\frac{8-{x}_{0}^{2}}{2[{x}_{0}^{2}-£¨s+t£©{x}_{0}+st]}$£¬ÒªÊ¹ÉÏÊöֵΪ¶¨Öµ£¬Ôò±ØÓУºs+t=0£¬st=-8£¬¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÉèÓÒ½¹µãF£¨c£¬0£©¹ØÓÚÖ±Ïßx-2y=0¶Ô³ÆµÄµãP£¨m£¬n£©£¬Ôò$\left\{\begin{array}{l}{\frac{m+c}{2}-2¡Á\frac{y+0}{2}=0}\\{\frac{n}{m-c}¡Á\frac{1}{2}=-1}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{m=\frac{3c}{5}}\\{n=\frac{4c}{5}}\end{array}\right.$£¬
¡ßµãP$£¨\frac{3c}{5}£¬\frac{4c}{5}£©$ÔÚÔ²x2+y2=4ÉÏ£®
¡à$£¨\frac{3c}{5}£©^{2}+£¨\frac{4c}{5}£©^{2}$=4£¬½âµÃc=2£®
¡ß$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬¡àa2=8£¬b2=4£®
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$£®
£¨2£©ÉèA£¨s£¬0£©£¬B£¨t£¬0£©£¬M£¨x0£¬y0£©£®
ÔòkMA•kMB=$\frac{{y}_{0}}{{x}_{0}-s}•\frac{{y}_{0}}{{x}_{0}-t}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-£¨s+t£©{x}_{0}+st}$£¬
¡ß${y}_{0}^{2}=4£¨1-\frac{{x}_{0}^{2}}{8}£©$£¬
¡àkMA•kMB=$\frac{8-{x}_{0}^{2}}{2[{x}_{0}^{2}-£¨s+t£©{x}_{0}+st]}$£¬
ҪʹÉÏÊöֵΪ¶¨Öµ£¬Ôò±ØÓУºs+t=0£¬st=-8£¬
½âµÃs=-t=¡À2$\sqrt{2}$£®
¡à¿ÉÈ¡A$£¨-2\sqrt{2}£¬0£©$£¬B$£¨2\sqrt{2}£¬0£©$£®
ÔòkMA•kMB=-$\frac{1}{2}$=-$\frac{{b}^{2}}{{a}^{2}}$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ð±ÂʼÆË㹫ʽ¡¢¶¨ÖµÎÊÌâ¡¢µã¶Ô³ÆÎÊÌâ¡¢´¹Ö±Æ½·ÖÏßÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{4}$ | B£® | $\frac{3}{5}$ | C£® | $\frac{1}{5}$ | D£® | $\frac{3}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ÔÂÈ÷Ë®Á¿ | 20£¼X£¼40 | 40¡ÜX¡Ü60 | X£¾60 |
| ¹©Ë®Õ¾ÔËÐеÄ×î¶àÊýÁ¿ | 1 | 2 | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com