精英家教网 > 高中数学 > 题目详情
若A(-1,-2),B(4,8),C(5,x),且A、B、C三点共线,则x=
 
考点:直线的斜率
专题:直线与圆
分析:【方法一】由A、B、C三点共线,得
AB
AC
共线;利用向量的知识求出x的值;
【方法二】】由A、B、C三点共线,得kAB=kAC;利用直线的斜率求出x的值.
解答: 解:【方法一】
∵A、B、C三点共线,
AB
AC
共线;
AB
=(4-(-1),8-(-2))=(5,10),
AC
=(5-(-1),x-(-2))=(6,x+2),
∴5(x+2)-10×6=0,
解得x=10;
【方法二】】∵A、B、C三点共线,
∴kAB=kAC
∵kAB=
8-(-2)
4-(-1)
=2,
kAC=
x-(-2)
5-(-1)
=
x+2
6

x+2
6
=2,
解得x=10;
故答案为:10.
点评:本题考查了三点共线的判定问题,利用向量的知识比较容易解答,利用斜率相等也可以解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥P-ABC中,E.F分别是AC.AB的中点,△ABC,△PEF都是正三角形,PF⊥AB.
(Ⅰ)证明PC⊥平面PAB;
(Ⅱ)求二面角P-AB-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC内接于圆O,若
CO 
AB
=2
BO
CA
,且|AB|=3,|CA|=6,则cosA=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
,若
a
+
b
a
的夹角为
π
3
a
+
b
b
的夹角为
π
4
,则
|
a
|
|
b
|
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某班共60名同学分别报了数学、物理、英语课外兴趣小组,其中报数学,物理,英语的人数分别是30,15,15,现在要抽取10名同学了解各科情况,则要抽取报数学小组的同学的人数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生500名,据此估计,该模块测试成绩不少于60分的学生人数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log2(x2-9)的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若α,β是非零实数,则“α+β=0”是“|α|+|β|>0”成立的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
(1)空间中,到一定点距离等于定长的点的集合是球面;
(2)球面上不同的三点不可能在同一直线上;
(3)过球面上不同的两点只能作一个大圆;
(4)球的表面积是半径相同的圆面积的4倍.
其中假命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案