分析 由约束条件作出可行域,利用图形得出目标函数z=mx+y的最优解,列方程求出m的值.
解答 解:由约束条件$\left\{\begin{array}{l}{x≥1}&{\;}\\{y≥-1}&{\;}\\{4x+y≤9}&{\;}\\{x+y≤3}&{\;}\end{array}\right.$,作出可行域如图所示,![]()
联立$\left\{\begin{array}{l}{x=1}\\{x+y=3}\end{array}\right.$,解得A(1,2);
化目标函数z=mx+y(m>0)为y=-mx+z,
由图可知,当直线y=-mx+z过A(1,2)点时,直线在y轴上的截距最大,
此时z最大值为2-m=1,解得m=1.
故答案为:1.
点评 本题考查了线性规划的应用问题,也考查了数形结合的应用问题,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平行移动$\frac{π}{4}$个单位长度 | B. | 向左平行移动$\frac{3π}{4}$个单位长度 | ||
| C. | 向左平行移动$\frac{π}{8}$个单位长度 | D. | 向左平行移动$\frac{3π}{8}$个单位长度 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,1) | B. | (-1,1] | C. | (-$\frac{1}{2}$,$\frac{1}{2}$) | D. | (-$\frac{1}{2}$,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com