精英家教网 > 高中数学 > 题目详情
5.已知角α为第四象限角,且其终边与单位圆交点的横坐标为$\frac{1}{3}$.
(1)求tanα的值;
(2)求$\frac{si{n}^{2}α-\sqrt{2}sinαcosα}{1+co{s}^{2}α}$的值.

分析 (1)根据同角的三角函数的定义进行化简求解即可.
(2)根据弦化切进行转化求解即可.

解答 解:(1)∵角α为第四象限角,且其终边与单位圆交点的横坐标为$\frac{1}{3}$.
∴cosα=$\frac{1}{3}$,则sinα=-$\sqrt{1-cos^2α}$=-$\sqrt{1-\frac{1}{9}}$=-$\sqrt{\frac{8}{9}}$=-$\frac{2\sqrt{2}}{3}$,
即tanα=$\frac{sinα}{cosα}=\frac{-\frac{2\sqrt{2}}{3}}{\frac{1}{3}}$=-2$\sqrt{2}$;
(2)$\frac{si{n}^{2}α-\sqrt{2}sinαcosα}{1+co{s}^{2}α}$=$\frac{sin^2α-\sqrt{2}sinαcosα}{sin^2α+2cos^2α}$=$\frac{ta{n}^{2}α-\sqrt{2}tanα}{2+ta{n}^{2}α}$=$\frac{(-2\sqrt{2})^{2}-\sqrt{2}(-2\sqrt{2})}{2+(-2\sqrt{2})^{2}}$=$\frac{8+4}{2+8}=\frac{12}{10}=\frac{6}{5}$.

点评 本题主要考查三角函数值的化简和求解,利用同角的三角函数的关系以及弦切互化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.“a=5”是“点(2,1)到直线x=a的距离为3”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.各项均为正数的等比数列{an}的前n项和为Sn,若a3=2,S4=5S2,则S4=$\frac{15}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,周期为π的是(  )
A.y=sin(2x-$\frac{π}{6}$)B.y=sin(x-$\frac{π}{6}$)C.y=cos(x-$\frac{π}{4}$)D.y=tan(2x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设向量$\overrightarrow{a}$=(2,-4),$\overrightarrow{b}$=(6,x),若|$\overrightarrow{a}+\overrightarrow{b}$|=|$\overrightarrow{a}-\overrightarrow{b}$|,则x=(  )
A.3B.-3C.12D.-12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在等差数列{an}中,a12=-6,公差d=-$\frac{13}{8}$,求首项a1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设直角坐标平面内与两个定点A(-2,0),B(2,0)的距离之差的绝对值等于2的点的轨迹是E,C是轨迹E上一点,直线BC垂直于x轴,则$\overrightarrow{AC}$$•\overrightarrow{BC}$=(  )
A.-9B.-3C.3D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z=$\frac{\sqrt{3}+i}{(1+i)^{2}}$,其中i为虚数单位,则|z|=(  )
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知正实数a,b,且a+b=1,则$\frac{2}{a}$+$\frac{4}{b}$的最小值为(  )
A.6+4$\sqrt{2}$B.4-2$\sqrt{2}$C.6+4$\sqrt{3}$D.5

查看答案和解析>>

同步练习册答案