精英家教网 > 高中数学 > 题目详情
11.如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种一种花,且相邻的2块种不同的花,则不同的种法总数为(  )
A.84B.24C.18D.48

分析 采用分类计数原理解决问题,分为三类:分别种两种花、三种花、四种花,分这三类来列出结果.

解答 解:分三类:种两种花有A42种种法;
种三种花有2A43种种法;
种四种花有A44种种法.
共有A42+2A43+A44=84.
故选:A.

点评 本题也可以这样解:按A-B-C-D顺序种花,可分A、C同色与不同色有4×3×(1×3+2×2)=84.考查分类计数原理的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|(x+m)(x-2m-1)<0},其中m∈R,集合B={x|$\frac{1-x}{x+2}$>0}.
(1)当m=$\frac{1}{2}$时,求A∪B;
(2)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,设直线l:$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)与曲线C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数)相交于A、B两点.
(1)若以坐标原点为极点,x轴的正半轴为极轴,求直线l的极坐标方程;
(2)设点P(2,$\sqrt{3}$),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数z满足z(1-i)2=|1-i|2,则z=(  )
A.1B.-11C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等比数列{an}的各项均为正数,且a2=6,a3+a4=72.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=an-n(n∈N*),求数列{bn}的前n项和${S}_{{n}_{\;}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{5\sqrt{2}}{2}$,曲线C的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{2}cosα}\\{y=\sqrt{2}sinα}\end{array}\right.$(α为参数).
(1)求直线l的普通方程;
(2)若P是曲线C上的动点,求点P到直线l的最大距离及点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.把红、蓝、白3张纸牌随机地分发给甲、乙、丙三个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是(  )
A.对立事件B.不可能事件
C.互斥但不对立事件D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=lnx+(x-a)2-$\frac{a}{2}$,a∈R.
(Ⅰ)若函数f(x)在[$\frac{1}{2}$,2]上单调递增,求实数a的取值范围;
(Ⅱ)求函数f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线y=4x与曲线y=x3围成图形的面积为(  )
A.0B.4C.8D.16

查看答案和解析>>

同步练习册答案