精英家教网 > 高中数学 > 题目详情
(Ⅰ)计算题,求[125 
2
3
+(
1
16
 -
1
2
+343 
1
3
] 
1
2
+(
1
3
0-ln
e

(Ⅱ)解方程:lg(10x)+2=4lgx.
考点:对数的运算性质,根式与分数指数幂的互化及其化简运算
专题:函数的性质及应用
分析:(Ⅰ)利用指数和对数的运算法则和运算性质求解.
(Ⅱ)由已知得3lgx=3,由此能求出x=10.
解答: 解:(Ⅰ)[125 
2
3
+(
1
16
 -
1
2
+343 
1
3
] 
1
2
+(
1
3
0-ln
e

=(25+4+7) 
1
2
+1-
1
2

=6+
1
2

=
13
2

(Ⅱ)∵lg(10x)+2=4lgx,
∴1+lgx+2=4lgx,
∴3lgx=3,
解得x=10.
点评:本题考查指数式的运算,考查对数方程的求解,是基础题,解题时要注意指数和对数的运算法则和运算性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,点S在平面ABC外,SB⊥AC,SB=AC=2,E,F分别是SC和AB的中点,则EF的长是(  )
A、
2
B、1
C、
2
2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD内接于⊙O,边AD,BC的延长线交于点P,直线AE切⊙O于点A,且AB•CD=AD•PC.求证:
(Ⅰ)△ABD∽△CPD;
(Ⅱ)AE∥BP.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2x-1
+a(a∈R)为奇函数,函数g(x)=m•2x-m.
(1)求函数f(x)的解析式;
(2)若在区间(-∞,0)上,y=f(x)的图象恒在y=g(x)的图象的下方,试确定实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,且PA=AB=1,F为PB中点.
(Ⅰ)求证:AF⊥平面PBC;
(Ⅱ)若AD=2,求二面角D-EC-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a、b、c,且满足
(2a-c)cosB
b
=cosC.
(1)求角B的大小;
(2)设
m
=(sinA,cos2A),
n
=(4k,1)(k>0),且
m
n
的最大值是5,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x•lnx(e为无理数,e≈2.718)
(1)求函数f(x)在点(e,f(e))处的切线方程;
(2)设实数a>
1
2e
,求函数f(x)在[a,2a]上的最小值;
(3)若k为正数,且f(x)>(k-1)x-k对任意x>1恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)在一个周期内的图象如图所示.
(1)求f(x)的解析式;
(2)求f(
π
4
)+f(
4
)+f(
4
)+…+f(
2013π
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中画出y=|x2+2x-3|的图象,并讨论关于x的方程|x2+2x-3|=a的实根的个数.

查看答案和解析>>

同步练习册答案