| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
分析 把已知结合正弦定理整理可得a2+b2-c2=ab,然后利用余弦定理cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$可求cosC,结合C的范围可求C.
解答 解:在△ABC中,∵asinA-csinC=(a-b)sinB,
由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$,得a2=(a-b)b+c2,
即a2+b2-c2=ab.①
由余弦定理得cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
结合0<C<π,得C=$\frac{π}{3}$.
故选:C.
点评 本题主要考查了三角形的正弦定理、余弦定理在解三角形中的综合应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | AC⊥BF | B. | 三棱锥A-BEF的体积为定值 | ||
| C. | EF∥平面ABCD | D. | 面直线AE、BF所成的角为定值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,4] | B. | [-1,2] | C. | [-1,4] | D. | (4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com