19£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©ÓëÇúÏßC£º$\left\{\begin{array}{l}{x=2cos¦È}\\{y=3sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©µÄÁ½¸ö½»µãΪA¡¢B£®
£¨1£©ÇóÖ±ÏßlµÄÇãб½Ç£»
£¨2£©ÇóÏÒABµÄ³¤£®

·ÖÎö £¨1£©Ê×ÏÈ£¬½«¸ÃÖ±ÏߵIJÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬È»ºóÈ·¶¨ÆäбÂʼ´¿É£»
£¨2£©½«ÇúÏßCµÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬È»ºó£¬½èÖúÓÚÍÖÔ²ÓëÖ±ÏßµÄλÖùØÏµ´¦Àí˼·£¬ÁªÁ¢·½³Ì×飬Çó½â½»µã×ø±ê£¬È»ºó£¬½èÖúÓÚÁ½µãÖ®¼äµÄ¾àÀ빫ʽȷ¶¨ÆäÏÒ³¤¼´¿É£®

½â´ð ½â£º£¨1£©ÓÉÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬µÃ
$\sqrt{3}x$-y-2$\sqrt{3}$=0£¬
Éè¸ÃÖ±ÏßµÄÇãб½ÇΪ¦È£¬
¡àÖ±ÏßlµÄбÂÊΪtan¦È=$\sqrt{3}$£¬
¡ß0¡Ü¦È£¼¦Ð£¬
¡àÖ±ÏßlµÄÇãб½Ç¦È=$\frac{¦Ð}{3}$£®
£¨2£©¸ù¾ÝÇúÏßC£º$\left\{\begin{array}{l}{x=2cos¦È}\\{y=3sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬µÃ
$\frac{{y}^{2}}{9}+\frac{{x}^{2}}{4}=1$£¬
ÁªÁ¢·½³Ì×飬
$\left\{\begin{array}{l}{y=\sqrt{3}£¨x-2£©}\\{9{x}^{2}+4{y}^{2}=36}\end{array}\right.$£¬
7x2-16x+4=0£¬
¡àx=$\frac{2}{7}$»òx=2£¬
¡ày=-$\frac{12\sqrt{3}}{7}$»òy=0£¬
¡àA£¨$\frac{2}{7}$£¬-$\frac{12\sqrt{3}}{7}$£©£¬B£¨2£¬0£©£¬
¡à|AB|=$\sqrt{£¨\frac{2}{7}-2£©^{2}+£¨-\frac{12\sqrt{3}}{7}-0£©^{2}}$
=$\frac{24}{7}$£¬
¡à|AB|=$\frac{24}{7}$£®

µãÆÀ ±¾ÌâÖØµã¿¼²éÁËÖ±ÏߺÍÍÖÔ²µÄ²ÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ¡¢Á½µã¼äµÄ¾àÀ빫ʽµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªx2-mx+1£¾0¶Ô0¡Üx¡Ü$\frac{1}{2}$ºã³ÉÁ¢£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¶¨ÒåÔÚÇø¼ä£¨-1£¬1£©Éϵĺ¯Êýf£¨x£©Âú×㣺¶ÔÈÎÒâx£¬y¡Ê£¨-1£¬1£©£¬¶¼ÓÐf£¨x£©+f£¨y£©=f£¨$\frac{x+y}{1+xy}$£©£¬ÇÒµ±x¡Ê£¨-1£¬0£©Ê±£¬ÓÐf£¨x£©£¾0£®
£¨1£©Åж¨f£¨x£©ÔÚÇø¼ä£¨-1£¬1£©ÉÏµÄÆæÅ¼ÐÔ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Åж¨f£¨x£©ÔÚÇø¼ä£¨-1£¬1£©Éϵĵ¥µ÷ÐÔ£¬²¢¸ø³öÖ¤Ã÷£»
£¨3£©ÇóÖ¤£ºf£¨$\frac{1}{{n}^{2}+3n+1}$£©=f£¨$\frac{1}{n+1}$£©-f£¨$\frac{1}{n+2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÉèÊýÁÐ{an}µÄÊ×ÏîΪ-1£¬ÇÒÂú×ãan+1=-$\frac{1}{2}$an-$\frac{3}{4}$£¬n¡Ý2£®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©ÉèÊýÁÐbn=$\frac{£¨{a}_{n}+\frac{1}{2}£©^{2}}{1-£¨{a}_{n}+\frac{1}{2}£©}$£¬ÇÒ{bn}µÄǰnÏîºÍΪSn£¬ÇóÖ¤Sn£¼$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Å×ÎïÏßy2=8xÉÏÒ»µãP£¨x0£¬y0£©µ½Ô­µãµÄ¾àÀëÓëµ½×¼ÏߵľàÀëÏàµÈ£¬Ôòx0=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=|x-1|-1£¬g£¨x£©=-4-|x+1|£®
£¨1£©Èôº¯Êýf£¨x£©µÄÖµ²»Ð¡ÓÚ2£¬ÇóxµÄȡֵ·¶Î§£»
£¨2£©Èô¶Ô?x¡ÊR£¬¶¼ÓÐf£¨x£©-t¡Ýg£¨x£©ºã³ÉÁ¢£¬ÊÔÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¹ýÔ­µãµÄÖ±ÏßÓëÔ²x2+y2-4x+3=0ÏàÇУ¬ÈôÇеãÔÚµÚËÄÏóÏÞ£¬Ôò¸ÃÖ±Ïß·½³ÌΪ£¨¡¡¡¡£©
A£®y=$-\sqrt{3}$xB£®y=$\frac{{\sqrt{3}}}{3}$xC£®y=$-\frac{{\sqrt{3}}}{3}$xD£®y=$\sqrt{3}$x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Éèa£¬bÊÇÁ½ÌõÖ±Ïߣ¬¦Á£¬¦ÂÊÇÁ½¸öÆ½Ãæ£¬ÔòÏÂÁÐÍÆµ¼ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®a?¦Á£¬¦Á¡Í¦Â£¬b¡Í¦Â⇒a¡ÍbB£®a¡Í¦Á£¬b¡Í¦Â£¬¦Á¡Î¦Â⇒a¡ÍbC£®a¡Í¦Á£¬¦Á¡Î¦Â£¬b¡Î¦Â⇒a¡ÍbD£®a¡Í¦Á£¬¦Á¡Í¦Â£¬b¡Î¦Â⇒a¡Íb

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÓÉy=cosx¼°xÖáΧ³ÉµÄ½éÓÚ0Óë2¦ÐÖ®¼äµÄÆ½ÃæÍ¼ÐεÄÃæ»ý£¬ÀûÓö¨»ý·ÖÓ¦±í´ïΪS=4${¡Ò}_{0}^{\frac{¦Ð}{2}}$cosxdx£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸