精英家教网 > 高中数学 > 题目详情
6.已知命题p:在△ABC中,若sinA>sinB,则A>B;命题q:若函数f(x)=sinωx的最小正周期为2π,则ω=1,则下列命题中真命题的是(  )
A.p∧qB.¬p∨qC.p∧¬qD.¬q∧p

分析 先判断命题p和命题q的真假,进而根据真值表可得答案A,B,C,D中复合命题的真假;

解答 解:在△ABC中,若sinA>sinB,则2RsinA>2RsinB,即a>b,则A>B,故命题p为真命题;
若函数f(x)=sinωx的最小正周期为2π,则|ω|=1,即ω=±1,故命题q为假命题;
故p∧q为假命题;
¬p∨q为假命题;
p∧¬q为真命题;
¬q∧p为假命题;
故选:C

点评 判断复合命题的真假分两步,第一步判断简单命题的真假第二步根据真值表判断复合命题的真假.此类题目属于中低档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,若($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是150°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合M={x||x-3|<4},集合N={x|$\frac{x+2}{x-1}$≤0,x∈Z},那么M∩N=(  )
A.{x|-1<x≤1}B.{-1,0}C.{0}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设反比例函数f(x)=$\frac{1}{x}$与二次函数g(x)=ax2+bx的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),且x1<x2,则$\frac{y_1}{y_2}$=(  )
A.2或$\frac{1}{2}$B.-2或$-\frac{1}{2}$C.2或$-\frac{1}{2}$D.-2或$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足|PA|=m|PB|,当m取最大值时,点P恰好在以A,B为焦点的双曲线上,则双曲线的离心率为(  )
A.$\frac{\sqrt{2}+1}{2}$B.$\sqrt{2}$+1C.$\frac{\sqrt{5}-1}{2}$D.$\sqrt{5}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={0,1,2,3},集合B={x|x=2a,a∈A},则A∩B=(  )
A.{0}B.{2}C.{0,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.${∫}_{0}^{\frac{π}{2}}$sin2$\frac{x}{2}$dx等于(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$-1C.2D.$\frac{π-2}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是两个共线向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,求证:$\overrightarrow{a}$∥$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.甲乙两人进行两种游戏,两种游戏规则如下:游戏Ⅰ:口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.游戏Ⅱ:口袋中有质地、大小完全相同的6个球,其中4个白球,2个红球,由裁判有放回的摸两次球,即第一次摸出记下颜色后放回再摸第二次,摸出两球同色算甲赢,摸出两球不同色算乙赢.
(Ⅰ)求游戏Ⅰ中甲赢的概率;
(Ⅱ)求游戏Ⅱ中乙赢的概率;并比较这两种游戏哪种游戏更公平?试说明理由.

查看答案和解析>>

同步练习册答案