精英家教网 > 高中数学 > 题目详情
18.${∫}_{0}^{\frac{π}{2}}$sin2$\frac{x}{2}$dx等于(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$-1C.2D.$\frac{π-2}{4}$

分析 根据定积分的计算法则,计算即可.

解答 解:${∫}_{0}^{\frac{π}{2}}$sin2$\frac{x}{2}$dx=${∫}_{0}^{\frac{π}{2}}$$\frac{1}{2}$(1-cosx)dx=$\frac{1}{2}$(x-sinx)${|}_{0}^{\frac{π}{2}}$=$\frac{1}{2}$($\frac{π}{2}$-1)=$\frac{π-2}{4}$
故选:D

点评 本题考查了定积分的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.函数f(x)的定义域为D,若存在闭区间[a,b]⊆D,使得函数f(x)满足:
①f(x)在[a,b]内是单调增函数;
②f(x)在[a,b]上的值域为[2a,2b],则称区间[a,b]为y=f(x)的“倍值区间“.
若函数g(x)=4-me-x存在“倍值区间“,则实数m的取值范围是(0,2e).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知等比数列{an}的首项a1、公比q是关于x的方程(t-1)x2+2x+(2t-1)=0的实数解,若数列{an}有且只有一个,则实数t的取值集合为{0,$\frac{1}{2}$,1,$\frac{3}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知命题p:在△ABC中,若sinA>sinB,则A>B;命题q:若函数f(x)=sinωx的最小正周期为2π,则ω=1,则下列命题中真命题的是(  )
A.p∧qB.¬p∨qC.p∧¬qD.¬q∧p

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足a1=$\frac{1}{2}$,an+1=$\left\{\begin{array}{l}{2{a}_{n}+2n-2,n为奇数}\\{-{a}_{n}-n,n为偶数}\end{array}\right.$数列{an}的前n项和为Sn,bn=a2n,其中n∈N*
(Ⅰ)试求a2,a3的值并证明数列{bn}为等比数列;
(Ⅱ)设cn=bn+a2n+1求数列$\left\{{\frac{1}{{{c_n}{c_{n+1}}}}}\right\}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(-1,1),若非零向量$\overrightarrow{c}$与$\overrightarrow{b}$共线且反向,且|$\overrightarrow{c}$|=8$\sqrt{2}$,则$\overrightarrow{a}$-$\overrightarrow{b}$与2$\overrightarrow{a}$+$\overrightarrow{c}$夹角的余弦值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=$\frac{1}{\sqrt{{a}^{x}-k{b}^{x}}}$(a>0,b>0,a≠1,b≠1)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,AC=2,AB=2,BC=$\sqrt{3}$,P是△ABC内部的一点,若$\frac{{S}_{△PAB}}{\overrightarrow{PA}•\overrightarrow{PB}}$=$\frac{{S}_{△PBC}}{\overrightarrow{PB}•\overrightarrow{PC}}$=$\frac{{S}_{△PCA}}{\overrightarrow{PC}•\overrightarrow{PA}}$(S表示相应三角形的面积),则PA+PB+PC=$\frac{3+\sqrt{13}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解下列不等式:
(1)x2-5x+6<0;
(2)x2+x-12≥0;
(3)x2-9≤0;
(4)3x2<7x-2.

查看答案和解析>>

同步练习册答案