精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其图象相邻两条对称轴之间的距离为,将该函数的图象向左平移个单位后,得到的图象对应的函数为偶函数.下列判断正确的是( )

A. 函数的最小正周期为

B. 函数的图象关于点对称

C. 函数的图象关于直线对称

D. 函数上单调递增

【答案】D

【解析】

由相邻对称轴之间的距离得出周期,解出,然后根据向左平移得到的图象为偶函数,解出的值,然后对选项进行判断。

解:图象相邻两条对称轴之间的距离为

所以周期为,选项A不正确,

,解得

函数图象向左平移单位后得

因为新函数为偶函数,

故当时,

所以

因为

所以

原函数为

函数的对称中心为,选项B不正确,

函数的对称轴为,选项C不正确,

因为

解得:

故函数的单调增区间为

时,函数的一个单调增区间为

所以D正确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,有一块半径为20米,圆心角的扇形展示台,展示台分成了四个区域:三角形,弓形,扇形和扇形(其中.某次菊花展依次在这四个区域摆放:泥金香、紫龙卧雪、朱砂红霜、朱砂红霜.预计这三种菊花展示带来的日效益分别是:泥金香50/,紫龙卧雪30/,朱砂红霜40/.

1)设,试建立日效益总量关于的函数关系式;

2)试探求为何值时,日效益总量达到最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断中正确的是(

A.中,的充要条件是成等差数列

B.的充分不必要条件

C.命题,使得,则的否定:,都有

D.若平面内一动点到定点的距离等于它到定直线的距离,则该动点的轨迹是一条抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现将甲、乙、丙、丁四个人安排到座位号分别是的四个座位上,他们分别有以下要求,

甲:我不坐座位号为的座位;

乙:我不坐座位号为的座位;

丙:我的要求和乙一样;

丁:如果乙不坐座位号为的座位,我就不坐座位号为的座位.

那么坐在座位号为的座位上的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率低于,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生09之间取整数值的随机数,指定1234表示命中,567890表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为(

A.0.35B.0.25C.0.20D.0.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是平面直角坐标系中两两不同的四点,,,,则称调和分割.已知平面上的点调和分割点,则下列说法正确的是

A. 可能线段的中点

B. 可能线段的中点

C. 可能同时在线段

D. 不可能同时在线段的延长线上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,圆,直线,直线过点,倾斜角为,以原点为极点,轴的正半轴为极轴建立极坐标系.

(1)写出直线与圆的交点极坐标及直线的参数方程;

(2)设直线与圆交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 分别是椭圆的左、右焦点,焦距为,动弦平行于轴,且.

(1)求椭圆的方程;

(2)过分别作直线交椭圆于,且,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在轴上,且经过点.

1)求圆的标准方程;

2)过点的直线与圆相交于两点,且,求直线的方程.

查看答案和解析>>

同步练习册答案