精英家教网 > 高中数学 > 题目详情
6.设i是虚数单位,复数$\frac{a-i}{1+i}$(a∈R)的实部与虚部相等,则a=(  )
A.-1B.0C.1D.2

分析 直接由复数代数形式的乘除运算化简复数$\frac{a-i}{1+i}$,又已知复数$\frac{a-i}{1+i}$(a∈R)的实部与虚部相等,即可解得a的值.

解答 解:∵$\frac{a-i}{1+i}$=$\frac{(a-i)(1-i)}{(1+i)(1-i)}=\frac{a-1-ai-i}{2}=\frac{a-1}{2}-\frac{a+1}{2}i$,
又复数$\frac{a-i}{1+i}$(a∈R)的实部与虚部相等,
∴$\frac{a-1}{2}=-\frac{a+1}{2}$,解得a=0.
故选:B.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2cosωx(asinωx+$\sqrt{3}$cosωx)-$\sqrt{3}$(a,ω>0)的最大值为2,f(x)的两个零点之间距离的最小值为$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)在△ABC中,a,b,c分别是三个内角A,B,C的对边,若锐角B满足f(B)=0,b=2$\sqrt{3}$,S△ABC=2$\sqrt{3}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若复数z1=-i,$\overline{z_2}=2+i$,则z1z2=(  )
A.-1-2iB.-1+2iC.1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,在△BCD所在平面α内有一点E,BE=7cm,A为平面α外一点,AB⊥BC,AB⊥BD,且AB=5cm.
计算:
(1)直线AE和平面α所成的角的大小;
(2)线段AE的长.(精确到0.1cm)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow a=(cosθ,-sinθ),\overrightarrow b=(-cos2θ,sin2θ)(θ∈(π,2π))$,若向量$\overrightarrow a,\overrightarrow b$的夹角为φ,则有(  )
A.φ=θB.φ=π-θC.φ=θ-πD.φ=θ-2π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将高三(1)班参加体检的36名学生,编号为:1,2,3,…,36,若采用系统抽样的方法抽取一个容量为4的样本,已知样本中含有编号为6号、24号、33号的学生,则样本中剩余一名学生的编号是15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{(1-2a)x+3a,x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$的值域为R,则实数a的取值范围是[0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=$\frac{cosπx}{x}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线的一个顶点为双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的中心,抛物线的焦点在双曲线的焦点上,求此抛物线的方程.

查看答案和解析>>

同步练习册答案