精英家教网 > 高中数学 > 题目详情
1.在同一平面直角坐标系中,画出下列两个函数的图象,并指出它们的共同性质.
(1)y=4x
(2)y=($\frac{1}{4}$)x

分析 (1)(2)根据指数函数的图象及性质,找出恒过坐标,即可做出图象.

解答 解:由题意,根据指数函数的性质可得:图象恒过(0,1),底数大于1,递增,底数大于0小于1,递减,
图象:
共同性质:图象都在x轴的上方;
图象恒过恒过(0,1).

点评 本题考查了指数函数的图象及性质.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.定义在区间(1,+∞)内的函数f(x)满足下列两个条件:
①对任意的x∈(1,+∞),恒有f(2x)=2f(x)成立;
②当x∈(1,2]时,f(x)=2-x.
已知函数y=f(x)的图象与直线mx-y-m=0恰有两个交点,则实数m的取值范围是(  )
A.[1,2)B.(1,2]C.[$\frac{4}{3}$,2)D.($\frac{4}{3}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=6+12x-x3在[-1,3]上的最大值与最小值之和为(  )
A.10B.12C.17D.19

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设曲线y=ax+ln(x+1)在点(0,0)处的切线方程为y=3x,则a=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow a=(m-1,1)$,$\overrightarrow b=(n,-1)$,且m>0,n>0,若$\overrightarrow a∥\overrightarrow b$,则$\frac{1}{m}+\frac{9}{n}$的最小值为(  )
A.12B.16C.20D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.海水受日月的引力,在一定的时候发生潮涨潮落,船只一般涨潮时进港卸货,落潮时出港航行,某船吃水深度(船底与水面距离)为4米,安全间隙(船底与海底距离)为1.5米,该船在2:00开始卸货,吃水深度以0.3米/时的速度减少,该港口某季节每天几个时刻的水深如下表所示,若选择y=Asin(ωx+φ)+K(A>0,ω>0)拟合该港口水深与时间的函数关系,则该船必须停止卸货驶离港口的时间大概控制在(要考虑船只驶出港口需要一定时间)(  )
时刻0:003:006:009:0012:0015:0018:0021:0024:00
水深5.07.55.02.55.07.55.02.55.0
A.5:00至5:30B.5:30至6:00C.6:00至6:30D.6:30至7:00

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知矩阵A=$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$,若矩阵A属于特征值λ1=3的一个特征向量为$\overrightarrow{α}$1=$[\begin{array}{l}{1}\\{1}\end{array}]$,属于特征值λ2=1的一个特征向量$\overrightarrow{α}$2=
$[\begin{array}{l}{1}\\{-1}\end{array}]$.
(1)求矩阵A;
(2)若向量$\overrightarrow{β}$=$[\begin{array}{l}{4}\\{2}\end{array}]$,求A2017β.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,在接下来的三项式26,21,22,依此类推,求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是(  )
A.110B.220C.330D.440

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在平面几何里有射影定理:“设△ABC的两边AB⊥AC,D是A点在BC边上的射影,则AB2=BD•BC”扩展到空间,若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,点O是A在底面BCD上的射影,且O在△BCD内,类比平面上三角形的射影定理,△ABC、△BOC、△BCD三者的面积关系是(S△ABC2=S△BOC.S△BDC..

查看答案和解析>>

同步练习册答案