分析 这是一个类比推理的题,在由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,由已知在平面几何中,(如图所示)若△ABC中,AB⊥AC,AD⊥BC,D是垂足,则AB2=BD•BC,我们可以类比这一性质,推理出若三棱锥A-BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,则(S△ABC)2=S△BOC.S△BDC.
解答 解:如图所示:![]()
由已知在平面几何中,
若△ABC中,AB⊥AC,AE⊥BC,E是垂足,
则AB2=BD•BC,
我们可以类比这一性质,推理出:
若三棱锥A-BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,
则(S△ABC)2=S△BOC.S△BDC.
故答案为:(S△ABC)2=S△BOC.S△BDC.
点评 类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{7}}{2}$ | B. | $\frac{\sqrt{7}}{3}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{\sqrt{5}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180° | |
| B. | 一切偶数都能被2整除,2100是偶数,所以2100能被2整除 | |
| C. | 由平面向量的运算性质,推测空间向量的运算性质 | |
| D. | 某校高二级有20班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x-y-6=0 | B. | x+y+6=0 | C. | x-y+6=0 | D. | x+y-6=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}-\frac{3}{5}i$ | B. | $-\frac{1}{5}+\frac{3}{5}i$ | C. | -$\frac{3}{5}$+$\frac{3}{5}$i | D. | $\frac{3}{5}$-$\frac{3}{5}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,π] | B. | (0,4π] | C. | [π,+∞) | D. | [4π,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com