精英家教网 > 高中数学 > 题目详情
18.给出下列3个命题:
①命题“存在x∈R,x2+1>3x”的否定是“任意x∈R,x2+1≤3x”;
②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;
③关于x的不等式|x+1|+|x-3|≥m的解集为R,则m≤4.
其中为真命题的序号是①③.

分析 由条件利用不等式的基本性质,两条直线的位置关系逐一判断各个选项是否正确,从而得出结论.

解答 解:命题“存在x∈R,x2+1>3x”的否定是“任意x∈R,x2+1≤3x”,故①为真命题.
由“m=-2”可以推出“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”,
由“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”,可得m=-2 或$\frac{m+2}{-m}•\frac{2-m}{m+2}$=-1,即 m=-2或m=1,不能推出m=-2,
故“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的充分不必要条件,故②不正确.
由于|x+1|+|x-3|≥4,故当关于x的不等式|x+1|+|x-3|≥m的解集为R时,m≤4,故③正确,
故答案为:①③.

点评 本题主要考查命题的真假的判断,不等式的基本性质,两条直线的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在10与100之间插入50个数使之成等差数列,求插入的数之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数y=(a-1)x在(-∞,+∞)上为减函数,则a满足1<a<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给出下列命题:①若$\overrightarrow{a}$,$\overrightarrow{b}$共线,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则($\overrightarrow{a}-\overrightarrow{b}$)∥($\overrightarrow{a}$+$\overrightarrow{b}$);②已知$\overrightarrow{a}$=2$\overrightarrow{e}$,$\overrightarrow{b}$=3$\overrightarrow{e}$,则$\overrightarrow{a}$=$\frac{3}{2}$$\overrightarrow{b}$;③若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=-3$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,且$\overrightarrow{{e}_{1}}$≠$\overrightarrow{{e}_{2}}$,则|$\overrightarrow{a}$|=3|$\overrightarrow{b}$|;④△ABC中,AD是BC边上的中线,则$\overline{AB}$+$\overrightarrow{AC}$=2$\overrightarrow{AD}$,其中正确的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设向量$\overrightarrow{a}$=(-1,2),如果向量$\overrightarrow{b}$=(m,1),如果$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$平行,那么$\overrightarrow{a}$与$\overrightarrow{b}$的数量积等于$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A=R,B={(x,y)|x,y∈R},f:A→B是从A到B的映射;f:x→(x+1,x2+1),求A中元素$\sqrt{2}$在B中的对应元素和B中元素($\frac{3}{2}$,$\frac{5}{4}$)在A中的对应元素.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.判断函数f(x)=x2+1是否具有奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若集合M={x|x=2m,m∈Z},N={x|x=4n+2,n∈Z},则M?N.(填⊆,?,?,?,=)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{2x-{x}^{2},0≤x≤1}\\{-{x}^{2},-1≤x<0}\end{array}\right.$,则函数f(x)的图象与直线y=x围成的封闭图形的面积为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案