精英家教网 > 高中数学 > 题目详情
10.判断函数f(x)=x2+1是否具有奇偶性.

分析 根据函数奇偶性的定义进行判断.

解答 解:函数的定义域为(-∞,+∞),
则f(-x)=(-x)2+1=x2+1=f(x),
则函数f(x)为偶函数.

点评 本题主要考查函数奇偶性的判断,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知幂函数f(x)=x${\;}^{{m}^{2}+m-2}$(m∈Z)在(0,+∞)上是减函数,且f(x)的图象关于y轴对称,试求函数g(x)=2x+$\frac{1}{f(x)}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=-x+log2$\frac{1-x}{1+x}$.求f($\frac{1}{2014}$)+f(-$\frac{1}{2014}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.给出下列3个命题:
①命题“存在x∈R,x2+1>3x”的否定是“任意x∈R,x2+1≤3x”;
②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;
③关于x的不等式|x+1|+|x-3|≥m的解集为R,则m≤4.
其中为真命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系中,①若直线y=x+b与圆x2+y2=4相切,即圆x2+y2=4上恰有一个点到直线y=x+b的距离为0,则b的值为$±2\sqrt{2}$;②若将①中的“圆x2+y2=4”改为“曲线x=$\sqrt{4-{y}^{2}}$”,将“恰有一个点”改为“恰有三个点”,将“距离为0”改为“距离为1”,即若曲线x=$\sqrt{4-{y}^{2}}$上恰有三个点到直线y=x+b的距离为1,则b的取值范围是(-$\sqrt{2}$,$\sqrt{2}$-2]..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}的首项为a1,公差为d,其前n项和为Sn,若直线y=$\frac{1}{2}$a1x+m与圆(x-2)2+y2=1的两个交点关于直线x+y-d=0对称,则数列{$\frac{1}{{S}_{n}}$}的前100项和=(  )
A.$\frac{100}{101}$B.$\frac{99}{100}$C.$\frac{98}{99}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知tanα=-$\frac{4}{3}$,则tan$\frac{α}{2}$的值为2或-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(2x-1)7展开式中第4项的二项式系数为35,第4项系数为-560.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设等差数列{an}的前n项和为Sn,已知a2=3,S5=25.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=x${\;}^{{a}_{n}}$(其中x为常数),求数列{bn}的前n项和Tn
(3)设数列bn=2${\;}^{{a}_{n}}$,设Gn=a1b1+a2b2+…+anbn ,求Gn

查看答案和解析>>

同步练习册答案