精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=2sin(2x+$\frac{π}{3}$)
(1)用五点法画出函数f(x)的大致图象,要有简单列表;
(2)求关于x的不等式f(x)>1的解集.

分析 (1)列表,描点,连线用五点法作函数y=Asin(ωx+φ)的图象即可.
(2)由题意可得sin(2x+$\frac{π}{3}$)>$\frac{1}{2}$,由正弦函数的性质可得2kπ+$\frac{π}{6}$<2x+$\frac{π}{3}$<2kπ+$\frac{5π}{6}$,k∈Z,从而解得关于x的不等式f(x)>1的解集.

解答 解:(1)列表如下:

2x+$\frac{π}{3}$0$\frac{π}{12}$π$\frac{3π}{2}$
x-$\frac{π}{6}$$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
y020-20
图象如下:

(2)由题意可得:2sin(2x+$\frac{π}{3}$)>1,即sin(2x+$\frac{π}{3}$)>$\frac{1}{2}$,
可得:2kπ+$\frac{π}{6}$<2x+$\frac{π}{3}$<2kπ+$\frac{5π}{6}$,k∈Z,
解得:kπ-$\frac{π}{12}$<x<kπ+$\frac{π}{4}$,k∈Z,
故关于x的不等式f(x)>1的解集为:{x|kπ-$\frac{π}{12}$<x<kπ+$\frac{π}{4}$,k∈Z,}.

点评 本题主要考查了五点法作函数y=Asin(ωx+φ)的图象,考查了正弦函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.${∫}_{0}^{1}$|x2-8|dx=(  )
A.$\frac{21}{3}$B.$\frac{22}{3}$C.$\frac{23}{3}$D.$\frac{25}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知三角形ABC的外接圆半径为1,且角A、B、C成等差数列,若角A,B,C所对的边长分别为a,b,c,求a2+c2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.4个学生与2个老师站成前后两排,每排三人,老师不站同一排的站法有432.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点T(-1,1)在抛物线y2=2px(p>0)的准线上.
(1)求该抛物线方程;
(2)若AB是抛物线过点C(0,-3)的任一弦,点M是抛物线准线与x轴的交点,直线AM,BM分别与抛物线交于P,Q两点,求证:直线PQ的斜率为定值,并求|PQ|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题中:
(1)平行于同-条直线的两个平面平行;
(2)若一个平面内至少有三个不共线的点到另一个平面的距离相等,则这两个平面平行;
(3)若三直线a、b、c两两平行,则在过直线a的平面中,有且只有一个平面与b,c均平行.
其中正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设△ABC内角A,B,C的对边分别为a,b,c,已知2cos(B+C)+cos2A=一$\frac{3}{2}$.
(1)求A的大小
(2)若a=$\sqrt{3}$,b+c=3,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆5x2+9y2=45,椭圆的右焦点为F,
(1)求过点F且斜率为1的直线被椭圆截得的弦长.
(2)求以M(1,1)为中点的椭圆的弦所在的直线方程.
(3)过椭圆的右焦点F的直线l交椭圆于A,B,求弦AB的中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.椭圆$\frac{x^2}{m+1}+\frac{y^2}{m}={1^{\;}}({m∈R})$的焦点坐标为(  )
A.(±1,0)B.$({±\sqrt{2m+1},0})$C.(0,±1)D.$({0,±\sqrt{2m+1}})$

查看答案和解析>>

同步练习册答案