精英家教网 > 高中数学 > 题目详情
17.双曲线y2-$\frac{{x}^{2}}{3}$=1的焦点坐标是(  )
A.(0,$\sqrt{2}$),(0,-$\sqrt{2}$)B.($\sqrt{2}$,0),($-\sqrt{2}$,0)C.(0,2),(0,-2)D.(2,0),(-2,0)

分析 根据题意,由双曲线的方程分析可得该双曲线的焦点位置以及a、b的值,计算可得c的值,进而有双曲线的焦点坐标公式计算可得答案.

解答 解:根据题意,双曲线的方程为y2-$\frac{{x}^{2}}{3}$=1,
其焦点在y轴上,且a=1,b=$\sqrt{3}$,
则c=$\sqrt{1+3}$=2,
则其焦点坐标为(0,2)、(0,-2);
故选:C.

点评 本题考查双曲线的标准方程,涉及双曲线的焦点坐标,注意由双曲线的标准方程分析其焦点位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,x<0}\\{-\frac{1}{x},x>0}\end{array}\right.$的图象上存在不同的两点A,B,使得曲线y=f(x)在这两点处的切线重合,则实数a的取值范围是(  )
A.(-∞,$\frac{1}{4}$)B.(2,+∞)C.(-2,$\frac{1}{4}$)D.(-∞,2)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知过点(-1,-1)的直线与圆x2+y2-2x+6y+6=0有两个公共点,则该直线的斜率的取值范围为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知复数z满足z=(-1+3i)(1-i)-4.
(1)求复数z的共轭复数;
(2)若ω=z+ai,且复数ω对应向量的模不大于复数z所对应向量的模,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某校为了解学生的学习情况,采用分层抽样的方法从高一150人、高二120人、高三180人中抽取50人进行问卷调查,则高三抽取的人数是20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)的图象上任意一点A(x,y)的坐标满足条件|x|≥|y|,称函数f(x)具有性质P,下列函数中,具有性质P的是(  )
A.f(x)=x2B.f(x)=$\frac{1}{{x}^{2}+1}$C.f(x)=sinxD.f(x)=ln(x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在测试中,客观题难度的计算公式为Pi=$\frac{{R}_{i}}{N}$,其中Pi为第i题的难度,Ri为答对该题的人数,N为参加测试的总人数.
现对某校髙三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如表所示:
题号12345
考前预估难度Pi0.90.80.70.60.4
测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如表所示(“√”表示答对,“×”表示答错):
题号
学生编号
12345
1×
2×
3×
4××
5
6×××
7××
8××××
9××
10×
(I)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入表,并估计这120名学生中第5题的实测答对人数;
题号12345
实测答对人数
实测难度
(Ⅱ)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;
(Ⅲ)定义统计量S=$\frac{1}{n}$[(P′1-P12+(P′2-P22+…+(P′n-Pn2],其中P′i为第i题的实测难度,Pi为第i题的预估难度(i=l,2,…,n),规定:若S<0.05,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某高职院校进行自主招生文化素质考试,考试内容为语文、数学、英语三科,总分为200分,现从上线的考生中随机随机抽取20人,将其成绩用茎叶图记录如下:
(Ⅰ)计算上线考生中抽取的男生成绩的方差s2;(结果精确到小数点后一位)
(Ⅱ)从上述茎叶图180分以上的考生中任选2人作为考生代表出席座谈会,求所选考生恰为一男一女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算:
(Ⅰ)(1-2i)(3+4i)(-2+i)
(Ⅱ) (1+2i)÷(3-4i)

查看答案和解析>>

同步练习册答案