精英家教网 > 高中数学 > 题目详情
13.若x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y-3≤0}\\{x-y-3≤0}\end{array}\right.$,则x2+y2+4x的最大值为21.

分析 作出不等式组对应的平面区域,利用配方法结合两点间的距离公式进行求解即可.

解答 解:作出不等式组对应的平面区域如图:
x2+y2+4x=(x+2)2+y2-4,
(x+2)2+y2的几何意义是区域内的点到定点D(-2,0)的距离的平方,
由图象知DB的距离最大,
由$\left\{\begin{array}{l}{x+y-3=0}\\{x-y-3=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=0}\end{array}\right.$,即B(3,0),
则x2+y2+4x=9+12=21,
故答案为:21

点评 本题主要考查线性规划的应用,根据数形结合以及配方法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知直线l1:$\sqrt{3}$x+$\sqrt{10}$y-4=0为曲线C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一条切线,直线l2:x-2y-4=0为曲线C2:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{2{b}^{2}}$=1的一条切线.求曲线C1,C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若至少存在一个x,使得方程lnx-mx=x(x2-2ex)成立,则实数m的取值范围为(-∞,$\frac{1}{e}+{e}^{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sinx-cosx
(1)若f(x)=3f(-x),求$\frac{co{s}^{2}x+sinxcosx}{1+si{n}^{2}x}$的值;
(2)求函数F(x)=f(x)•f(-x)+f2(-x)的最小值和单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.两个球的体积之比为8:27,那么这两个球的表面积的比为4:9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.y=sin($\frac{π}{3}$-$\frac{1}{2}$x),x∈[-2π,2π]的减区间是[$-\frac{π}{3}$,$\frac{5π}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设命题p:不等式0<log3x≤1的解集为A,命题q:不等式x-a≤0的解集为B,若p是q的充分而非必要条件,则实数a的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD的底面ABCD是平行四边形,PA⊥底面ABCD,PA=3,AD=2,AB=4,∠ABC=60°.
(1)求证:BC⊥平面PAC;
(2)E是侧棱PB上一点,记$\frac{PE}{PB}$=λ(0<λ<1),是否存在实数λ,使平面ADE与平面PAD所成的二面角为60°?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.我市高一某学生打算在2019年高考结束后购买一件电子产品,为此,计划从2017年9月初开始,每月月初存入一笔购买电子产品的专用存款,使这笔存款到2019年6月底连本带息共有4000元,如果每月的存款数额相同,依月息0.2%并按复利计算,问每月应存入多少元钱?(精确到1元)(注:复利是把前一期的利息和本金加在一起算着本金,再计算下一期的利息.)
(参考数据:1.00220≈1.0408,1.00221≈1.0429,1.00222≈1.0449)

查看答案和解析>>

同步练习册答案