精英家教网 > 高中数学 > 题目详情
4.若至少存在一个x,使得方程lnx-mx=x(x2-2ex)成立,则实数m的取值范围为(-∞,$\frac{1}{e}+{e}^{2}$].

分析 求出m=$\frac{lnx}{x}-{x}^{2}+2ex$,且x>0,设f(x)=$\frac{lnx}{x}-{x}^{2}+2ex$,则m的取值范围即f(x)的值域,对f(x)求导得${f}^{'}(x)=\frac{1-lnx}{{x}^{2}}+2e-2x$,利用导数性质能求出实数m的取值范围.

解答 解:∵lnx-mx=x(x2-2ex),
∴m=$\frac{lnx}{x}-{x}^{2}+2ex$,且x>0,
设f(x)=$\frac{lnx}{x}-{x}^{2}+2ex$,
则m的取值范围即f(x)的值域,
对f(x)求导得${f}^{'}(x)=\frac{1-lnx}{{x}^{2}}+2e-2x$,
当x∈(0,e)时,f′(x)>0,当x∈(e,+∞)时,f′(x)<0.
∴当e=0时,f′(x)=0,f(x)取最大值f(e)=$\frac{lne}{e}-{e}^{2}+2{e}^{2}$=$\frac{1}{{e}^{\;}}+{e}^{2}$.
$\underset{lim}{x→0}$f(x)=-∞.
∴实数m的取值范围为(-∞,$\frac{1}{e}+{e}^{2}$].
故答案为:(-∞,$\frac{1}{e}+{e}^{2}$].

点评 本题考查实数的取值范围的求法,考查构造法、导数性质、函数最值等等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=cos(ωx+φ-\frac{π}{2})(ω>0\;,\;|φ|<\frac{π}{2})$的部分图象如图所示,则$y=f(x+\frac{π}{6})$取得最小值时x的集合为(  )
A.$\{x|x=2kπ-\frac{π}{3}\;,\;k∈Z\}$B.$\{x|x=2kπ-\frac{π}{6}\;,\;k∈Z\}$C.$\{x|x=kπ-\frac{π}{3}\;,\;k∈Z\}$D.$\{x|x=kπ-\frac{π}{6}\;,\;k∈Z\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正四棱锥的底面边长为4cm,高为$\sqrt{5}cm$,则该四棱锥的侧面积是24cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=(  )
A.(-3,-$\frac{3}{2}$)B.($\frac{3}{2}$,3)C.(1,$\frac{3}{2}$)D.(-3,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知AB是半圆O的直径,AB=4,C、D是半圆上的两个三等分点.
(1)求$\overrightarrow{AO}•\overrightarrow{OD}$和|$\overrightarrow{AO}+\overrightarrow{OC}$|;
(2)在半圆内任取一点P,求△ABP的面积大于2$\sqrt{3}$的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.下表提供了某厂生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据,
 x 2 4 6 8 10
 y 4 5 7 9 10
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,
(2)根据(1)中求出的线性回归方程,预测生产20吨该产品的生产能耗是多少吨标准煤?
附:回归直线的斜率和截距的最小二乘估计分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数f(x)=Asin(ωx+α)(A>0,ω>0,-$\frac{π}{2}$<α<$\frac{π}{2}$)的最小正周期是π,且当x=$\frac{π}{6}$时f(x)取得最大值3.
(1)求f(x)的解析式及单调增区间;
(2)若x0∈(0,2π],且f(x0)=$\frac{3}{2}$,求x0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y-3≤0}\\{x-y-3≤0}\end{array}\right.$,则x2+y2+4x的最大值为21.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知三棱锥S-ABC的三条侧棱两两垂直且SA=SB=SC=1,则该三棱锥的外接球的体积为$\frac{\sqrt{3}}{2}π$.

查看答案和解析>>

同步练习册答案