精英家教网 > 高中数学 > 题目详情
17.已知函数$f(x)=cos(ωx+φ-\frac{π}{2})(ω>0\;,\;|φ|<\frac{π}{2})$的部分图象如图所示,则$y=f(x+\frac{π}{6})$取得最小值时x的集合为(  )
A.$\{x|x=2kπ-\frac{π}{3}\;,\;k∈Z\}$B.$\{x|x=2kπ-\frac{π}{6}\;,\;k∈Z\}$C.$\{x|x=kπ-\frac{π}{3}\;,\;k∈Z\}$D.$\{x|x=kπ-\frac{π}{6}\;,\;k∈Z\}$

分析 由周期求出ω,由五点法作图求出φ的值,可得函数的最大值,再利用正弦函数的最值,求得$y=f(x+\frac{π}{6})$取得最小值时x的集合.

解答 解:根据函数$f(x)=cos(ωx+φ-\frac{π}{2})(ω>0\;,\;|φ|<\frac{π}{2})$=sin(ωx+φ) 的部分图象,可得$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{π}{3}$-$\frac{π}{12}$,∴ω=2.
再根据五点法作图可得2•$\frac{π}{12}$+φ=0,∴φ=-$\frac{π}{6}$,∴f(x)=sin(2x-$\frac{π}{6}$).
则$y=f(x+\frac{π}{6})$=sin(2x+$\frac{π}{6}$) 取得最小值时,应有2x+$\frac{π}{6}$=2kπ-$\frac{π}{2}$,即x=kπ-$\frac{π}{3}$,k∈Z,
故此时,x的集合为{x|x=kπ-$\frac{π}{3}$,k∈Z},
故选:C.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值;还考查了正弦函数的最大值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知圆C:x2+y2-6x-8y+21=0.
(1)若直线l1过定点A(1,1),且与圆C相切,求l1的方程;
(2)若圆D的半径为3,圆心在直线l2:x-y+2=0上,且与圆C外切,求圆D的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知x与y之间的一组数据:
X0134
Y1357
则y与x的线性回归方程为y=bx+a必过点(2,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥0\\ x≤0\end{array}\right.$则2x+y的最小值为(  )
A.$-\frac{1}{2}$B.0C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.学校组织学生参加某项比赛,参赛选手必须有很好的语言表达能力和文字组织能力.学校对10位已入围的学生进行语言表达能力和文字组织能力的测试,测试成绩分为A,B,C三个等级,其统计结果如表:

语言表达能力
文字组织能力
ABC
A220
B1a1
C01b
由于部分数据丢失,只知道从这10位参加测试的学生中随机抽取一位,抽到语言表达能力或文字组织能力为C的学生的概率为$\frac{3}{10}$.
( I)求a,b的值;
( II)从测试成绩均为A或 B的学生中任意抽取2位,求其中至少有一位语言表达能力或文字组织能力为A的学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.圆x2+y2-2mx-8y+13=0与直线x+y-1=0有公共点,则实数m的取值范围是(  )
A.$[3-2{\sqrt{3}_{\;}}{,_{\;}}+∞)$B.[3,4]
C.$[-2{\sqrt{3}_{\;}}{,_{\;}}2\sqrt{3}]$D.$(-{∞_{\;}}{,_{\;}}3-2\sqrt{3}]∪[3+2{\sqrt{3}_{\;}}{,_{\;}}+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求曲线y=${∫}_{0}^{x}$$\sqrt{3-{t}^{2}}$dt从x=0至x=$\sqrt{3}$所对应的曲线的弧长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l1:$\sqrt{3}$x+$\sqrt{10}$y-4=0为曲线C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一条切线,直线l2:x-2y-4=0为曲线C2:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{2{b}^{2}}$=1的一条切线.求曲线C1,C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若至少存在一个x,使得方程lnx-mx=x(x2-2ex)成立,则实数m的取值范围为(-∞,$\frac{1}{e}+{e}^{2}$].

查看答案和解析>>

同步练习册答案