精英家教网 > 高中数学 > 题目详情
9.下表提供了某厂生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据,
 x 2 4 6 8 10
 y 4 5 7 9 10
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,
(2)根据(1)中求出的线性回归方程,预测生产20吨该产品的生产能耗是多少吨标准煤?
附:回归直线的斜率和截距的最小二乘估计分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

分析 (1)根据表中提供的数据,计算$\overline{x}$、$\overline{y}$,
求出回归系数,写出线性回归方程;
(2)利用线性回归方程计算x=20时$\widehat{y}$的值即可.

解答 解:(1)根据表中提供的数据,
计算$\overline{x}$=$\frac{1}{5}$×(2+4+6+8+10)=6,
$\overline{y}$=$\frac{1}{5}$×(4+5+7+9+10)=7,
且$\sum_{i=1}^{5}$(xi-$\overline{x}$)(yi-$\overline{y}$)=(-4)×(-3)+(-2)×(-1)+0×0+2×2+4×3=30,
$\sum_{i=1}^{5}$${{(x}_{i}-\overline{x})}^{2}$=(-4)2+(-2)2+02+22+42=40,
∴$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{30}{40}$=0.75,
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=7-0.75×6=2.5,
∴y关于x的线性回归方程为$\widehat{y}$=0.75x+2.5,
(2)根据(1)中求出的线性回归方程,
计算x=20时,$\widehat{y}$=0.75×20+2.5=17.5,
∴预测生产20吨该产品的生产能耗是17.5吨标准煤.

点评 本题考查了线性回归方程的求法与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.圆x2+y2-2mx-8y+13=0与直线x+y-1=0有公共点,则实数m的取值范围是(  )
A.$[3-2{\sqrt{3}_{\;}}{,_{\;}}+∞)$B.[3,4]
C.$[-2{\sqrt{3}_{\;}}{,_{\;}}2\sqrt{3}]$D.$(-{∞_{\;}}{,_{\;}}3-2\sqrt{3}]∪[3+2{\sqrt{3}_{\;}}{,_{\;}}+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.正方体ABCD-A1B1C1D1中,M,N分别是棱BC,CC1上不与正方体顶点重合的动点,用平面AMN截正方体,下列关于截面的说法正确的有①②.
①若BM=C1N,则截面为等腰梯形
②若BM=CM,且$CN>\frac{1}{2}C{C_1}$时,截面为五边形
③截面的面积存在最大值
④截面的面积存在最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)求函数y=cos(x-$\frac{π}{12}$)的单调递增区间;
(2)求函数y=2sin(2x+$\frac{π}{6}$).x∈(-π,0]的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若至少存在一个x,使得方程lnx-mx=x(x2-2ex)成立,则实数m的取值范围为(-∞,$\frac{1}{e}+{e}^{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=3sinx-4cosx,则f′($\frac{3π}{2}$)=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sinx-cosx
(1)若f(x)=3f(-x),求$\frac{co{s}^{2}x+sinxcosx}{1+si{n}^{2}x}$的值;
(2)求函数F(x)=f(x)•f(-x)+f2(-x)的最小值和单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.y=sin($\frac{π}{3}$-$\frac{1}{2}$x),x∈[-2π,2π]的减区间是[$-\frac{π}{3}$,$\frac{5π}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点A(1,0),B(0,-1),P是曲线y=$\sqrt{1{-x}^{2}}$上的一个动点,则$\overrightarrow{AP}$•$\overrightarrow{BP}$的最大值是1$+\sqrt{2}$.

查看答案和解析>>

同步练习册答案