ÏÖÔÚÈËÃÇÓÃQQ½¨Á¢Á˺ܶàȺ£¬ÓÐʱºòÒ»¸öÈ˹ÜÀí¶à¸öȺºÜ²»·½±ã£¬ËùÒÔһЩÈ˾Ϳª·¢ÁËQQȺ»úÆ÷ÈËÀ´¹ÜÀíȺ£¬ÓÃÀ´»Ø¸´ÈºÀïÃæÒ»Ð©ºÃÓѵÄÎÊÌ⣬²»¹ýÕâ¸öǰÌáÊÇÏÈÉèÖúÃÎÊ´ðÊý¾Ý¿â£¬Ä³ÍøÓÑÉèÖÃÁËÈýÀàÎÊ´ðÊý¾Ý¿â£¬²¢¹æ¶¨£ºÃ¿»Ø´ð1¸öµÚÒ»ÀàÊý¾Ý¿âÖеÄÎÊÌ⣨¹²ÓÐa¸öÎÊÌ⣩µÃ1·Ö£¬Ã¿»Ø´ð1¸öµÚ¶þÀàÊý¾Ý¿âÖеÄÎÊÌ⣨¹²ÓÐb¸öÎÊÌ⣩µÃ2·Ö£¬Ã¿»Ø´ð1¸öµÚÈýÀàÊý¾Ý¿âÖеÄÎÊÌ⣨¹²ÓÐc¸öÎÊÌ⣩µÃ3·Ö£®
£¨¢ñ£©µ±a=3£¬b=2£¬c=1ʱ£¬´Ó¸ÃÊý¾Ý¿âÖÐÈÎÒâ»Ø´ð£¨ÓÐÖØ¸´£¬ÇÒÿ¸öÎÊÌâµÄ»ú»á¾ùµÈ£©2¸öÎÊÌ⣬¼ÇËæ»ú±äÁ¿¦ÎΪ»Ø´ðÕâ2¸öÎÊÌâËùµÃ·ÖÊýÖ®ºÍ£¬Çó¦ÎµÄ·Ö²¼ÁУ®
£¨¢ò£©´Ó¸ÃÊý¾Ý¿âÖÐÈÎÒâ»Ø´ð£¨Ã¿¸öÎÊÌâµÄ»ú»á¾ùµÈ£©1¸öÎÊÌ⣬¼ÇËæ»ú±äÁ¿¦ÇΪ»Ø´ð´ËÎÊÌâËùµÃ·ÖÊý£¬ÈôE£¨¦Ç£©=
5
3
£¬D£¨¦Ç£©=
5
9
£¬Çóa£ºb£ºc£®
¿¼µã£ºÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûÓë·½²î,ÀëÉ¢ÐÍËæ»ú±äÁ¿¼°Æä·Ö²¼ÁÐ
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨¢ñ£©ÓÉÒÑÖªµÃ¦ÎµÄ¿ÉÄÜȡֵΪ2£¬3£¬4£¬5£¬6£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁУ®
£¨¢ò£©ÓÉÒÑÖªµÃ¦ÇµÄ¿ÉÄÜȡֵΪ1£¬2£¬3£¬P£¨¦Ç=1£©=
1
a
£¬P£¨¦Ç=2£©=
1
b
£¬P£¨¦Ç=3£©=
1
c
£¬ÓÉE£¨¦Ç£©=
5
3
£¬D£¨¦Ç£©=
5
9
£¬ÁгöÈýÔªÒ»´Î·½³Ì×飬·Ö±ðÇó³öa=2£¬b=3£¬c=6£¬ÄÜÇóµÃµ½a£ºb£ºc=2£º3£º6£®
½â´ð£º ½â£º£¨¢ñ£©ÓÉÒÑÖªµÃ¦ÎµÄ¿ÉÄÜȡֵΪ2£¬3£¬4£¬5£¬6£¬
P£¨¦Î=2£©=
3
6
¡Á
3
6
=
1
4
£¬
P£¨¦Î=3£©=
3
6
¡Á
2
6
+
2
6
¡Á
3
6
=
1
3
£¬
P£¨¦Î=4£©=
2
6
¡Á
2
6
+
3
6
¡Á
1
6
+
1
6
¡Á
3
6
5
18
£¬
P£¨¦Î=5£©=
2
6
¡Á
1
6
+
1
6
¡Á
2
6
=
1
9
£¬
P£¨¦Î=6£©=
1
6
¡Á
1
6
=
1
36
£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º
 ¦Î 2 3 4 5
 P 
1
4
 
1
3
 
5
18
 
1
9
 
1
36
£¨¢ò£©ÓÉÒÑÖªµÃ¦ÇµÄ¿ÉÄÜȡֵΪ1£¬2£¬3£¬
P£¨¦Ç=1£©=
1
a
£¬P£¨¦Ç=2£©=
1
b
£¬P£¨¦Ç=3£©=
1
c
£¬
¡ßE£¨¦Ç£©=
5
3
£¬D£¨¦Ç£©=
5
9
£¬
¡à
1
a
+
1
b
+
1
c
=1
1¡Á
1
a
+2¡Á
1
b
+3¡Á
1
c
=
5
3
(1-
5
3
)2¡Á
1
a
+(2-
5
3
)2¡Á
1
b
+(3-
5
3
)2¡Á
1
c
=
5
9
£¬
½âµÃa=2£¬b=3£¬c=6£¬
¡àa£ºb£ºc=2£º3£º6£®
µãÆÀ£º±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍû¡¢·½²îµÄÇ󷨼°Ó¦Óã¬ÊÇÖеµÌ⣬½âÌâʱҪעÒâ·½²î¹«Ê½µÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôº¯Êýcosx=
2m-1
3m+2
£¬ÇÒx¡ÊR£¬ÔòmµÄȡֵ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼Ç¿Õ¼äÏòÁ¿
OA
=
a
£¬
OB
=
b
£¬
OC
=
c
£¬ÆäÖÐ
a
£¬
b
£¬
c
¾ùΪµ¥Î»ÏòÁ¿£®Èô
a
¡Í
b
£¬ÇÒ
c
Óë
a
£¬
b
µÄ¼Ð½Ç¾ùΪ¦È£¬¦È¡Ê[0£¬¦Ð]£®ÓÐÒÔϽáÂÛ£º
¢Ù
c
¡Í£¨
a
-
b
£©£»
¢ÚÖ±ÏßOCÓëÆ½ÃæOABËù³É½ÇµÈÓÚÏòÁ¿
c
Óë
a
+
b
µÄ¼Ð½Ç£»
¢ÛÈôÏòÁ¿
a
+
b
ËùÔÚÖ±ÏßÓëÆ½ÃæABC´¹Ö±£¬Ôò¦È=60¡ã£»
¢Üµ±¦È=90¡ãʱ£¬PΪ¡÷ABCÄÚ£¨º¬±ß½ç£©Ò»¶¯µã£¬ÈôÏòÁ¿
OP
Óë
a
+
b
+
c
¼Ð½ÇµÄÓàÏÒֵΪ
6
3
£¬Ôò¶¯µãPµÄ¹ì¼£ÎªÔ²£®
ÆäÖУ¬ÕýÈ·µÄ½áÂÛÓÐ
 
£¨Ð´³öËùÓÐÕýÈ·½áÂÛµÄÐòºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÑØÒ»ÌõС·ǰ½ø£¬´ÓAµ½B£¬·½Î»½ÇÊÇ50¡ã£¬¾àÀëÊÇ470m£¬´ÓBµ½C£¬·½Î»½ÇÊÇ80¡ã£¬¾àÀëÊÇ860m£¬´ÓCµ½D£¬·½Î»½ÇÊÇ150¡ã£¬¾àÀëÊÇ640m£®ÊÔ»­³öʾÒâͼ£¬²¢¼ÆËã³ö´ÓAµ½DµÄ·½Î»½ÇºÍ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè
a1
=2
i
-
j
+
k
£¬
a2
=
j
+3
j
-2
k
£¬
a3
=-2
i
+
j
-3
k
£¬
a4
=3
i
+2
j
+5
k
£¬
i
£¬
j
£¬
k
ÊǿռäÁ½Á½´¹Ö±µÄµ¥Î»ÏòÁ¿ÊÇ·ñ´æÔÚʵÊý¦Ë¦Ì¦Ã£¬Ê¹
a4
=¦Ë
a1
+¦Ì
a2
+¦Ã
a3
³ÉÁ¢£¿²»´æÔÚÇë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ?ABCDµÄ¶Ô½ÇÏßBDµÄÑÓ³¤ÏßÉÏÈ¡µãE£¬F£¬Ê¹BE=DF£¬ÇóÖ¤£ºËıßÐÎAECFÊÇÆ½ÐÐËıßÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Æ½ÃæÄÚÓÐn£¨n¡Ý2£©ÌõÖ±Ïߣ¬ÈκÎÁ½Ìõ¶¼²»Æ½ÐУ¬ÈκÎÈýÌõ²»¹ýͬһµã£¬Îʽ»µãµÄ¸öÊýf£¨n£©Îª¶àÉÙ£¿²¢Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Æ½ÃæÏòÁ¿µÄ¼¯ºÏA µ½AµÄÓ³Éäf£¨
x
£©=
x
-2£¨
x
a
£©
a
£¬ÆäÖÐ
a
Ϊ³£ÏòÁ¿£®ÈôÓ³ÉäfÂú×ãf£¨
x
£©•f£¨
y
£©=
x
y
¶ÔÈÎÒâµÄ
x
£¬
y
¡ÊAºã³ÉÁ¢£¬Ôò
a
µÄ×ø±ê²»¿ÉÄÜÊÇ£¨¡¡¡¡£©
A¡¢£¨0£¬0£©
B¡¢£¨
2
4
£¬
2
4
£©
C¡¢£¨
2
2
£¬
2
2
£©
D¡¢£¨-
1
2
£¬
3
2
£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÎÞÇîÊýÁÐ{an}£¬Èç¹û´æÔÚ³£ÊýA£¬¶ÔÓÚÈÎÒâ¸ø¶¨µÄÕýÊý?£¨ÎÞÂÛ¶àС£©£¬×Ü´æÔÚÕýÕûÊýN£¬Ê¹µÃn£¾Nʱ£¬ºãÓÐ|an-A|£¼?³ÉÁ¢£¬¾Í³ÆÊýÁÐ{an}µÄ¼«ÏÞΪA£¬ÔòËĸöÎÞÇîÊýÁУº
¢Ù{£¨-1£©n¡Á2}£»
¢Ú{
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­+
1
(2n-1)(2n+1)
}£»
¢Û{1+
1
2
+
1
22
+
1
23
+¡­+
1
2n-1
}£»
¢Ü{1¡Á2+2¡Á22+3¡Á23+¡­+n¡Á2n}£¬
Æä¼«ÏÞΪ2¹²ÓУ¨¡¡¡¡£©
A¡¢4¸öB¡¢3¸öC¡¢2¸öD¡¢1¸ö

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸