精英家教网 > 高中数学 > 题目详情
7.在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,且AC=BC=5,SB=5$\sqrt{5}$.
(1)证明:SC⊥BC;
(2)求三棱锥的体积VS-ABC
(3)求侧面SBC与底面ABC所成二面角的大小.

分析 (1)利用SA⊥平面ABC,根据三垂线定理,可得SC⊥BC.
(2)先计算S△ABC,再求三棱锥的体积VS-ABC
(3)由于BC⊥AC,SC⊥BC,可知∠SCA是侧面SCB与底面ABC所成二面角的平面角.在Rt△SCB中,求得SC=10,在Rt△SAC中,可求侧面SBC与底面ABC所成的二面角的大小.

解答 证明:(1)∵∠SAB=∠SAC=90°,
∴SA⊥AB,SA⊥AC.
又AB∩AC=A,∴SA⊥平面ABC.
由于∠ACB=90°,即BC⊥AC,
由三垂线定理,得SC⊥BC.
解:(2)在Rt△SAC中,
∵SA=$\sqrt{S{C}^{2}-A{C}^{2}}$=5$\sqrt{3}$.
S△ABC=$\frac{1}{2}$•AC•BC=$\frac{1}{2}$×5×5=$\frac{25}{2}$.
∴VS-ABC=$\frac{1}{3}$•S△ACB•SA=$\frac{1}{3}$×$\frac{25}{2}×5\sqrt{3}=\frac{125\sqrt{3}}{6}$.
(3)∵BC⊥AC,SC⊥BC
∴∠SCA是侧面SCB与底面ABC所成二面角的平面角.
在Rt△SCB中,BC=5,SB=5$\sqrt{5}$.
得SC=$\sqrt{S{B}^{2}-B{C}^{2}}$=10
在Rt△SAC中,AC=5,SC=10,cosSCA=$\frac{AC}{SC}$=$\frac{5}{10}=\frac{1}{2}$,
∴∠SCA=60°,
即侧面SBC与底面ABC所成的二面角的大小为60°.

点评 本题以三棱锥为载体,考查线线垂直,考查线面角,考查几何体的体积,关键是作出二面角的平面角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知数列{an}满足an+1=1-$\frac{1}{a_n}$(n∈N*),且a1=2,则a2017=(  )
A.-1B.$\frac{1}{2}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.有5张卡片上分别写有数字1,2,3,4,5从这5张卡片中随机抽取2张,那么取出的2张卡片上的数字之积为偶数的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{7}{10}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设平面α∥平面β,直线a?α,点B∈β,则在β内过点B的所有直线中(  )
A.不存在与a平行的直线B.存在唯一一条与a平行的直线
C.存在无数条与a平行的直线D.只有两条与a平行的直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{ax-1}{x+1}$.
(1)若a=2,利用定义法证明:函数f(x)在(-∞,-1)上是增函数;
(2)若函数f(x)在区间(-∞,-1)上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.过椭圆$\frac{x^2}{4}$+${\frac{y}{3}^2}$=1的右焦点作斜率为2的直线交椭圆于A,B两点,求线段|AB|的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}的前n项和Sn满足Sn=2an-1.若对任意正整数n都有λSn+1-Sn<0恒成立,则实数λ的取值范围为(  )
A.λ<1B.$λ<\frac{1}{2}$C.$λ<\frac{1}{3}$D.$λ<\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过点M(0,-3)的直线l与以点A(3,0),B(-4,1)为端点的线段AB有公共点,则直线l的斜率k的取值范围为(  )
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.(-∞,-1)∪(1,+∞)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“$φ=\frac{π}{2}$”是“函数f(x)=sin(2x+φ)是偶函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案