精英家教网 > 高中数学 > 题目详情
7.已知命题p:“?x∈[0,1],a≥ex”;命题q:“?x0∈R,x${\;}_{0}^{2}$+4x0+a=0”.若命题“p∧q”是假命题,则实数a的取值范围是(  )
A.(-∞,4]B.(-∞,1)∪(4,+∞)C.(-∞,e)∪(4,+∞)D.(1,+∞)

分析 对于命题p:利用ex在x∈[0,1]上单调递增即可得出a的取值范围,对于命题q利用判别式△≥0即可得出a的取值范围,再利用命题“p∧q”是假命题,求其交集即可.

解答 解:对于命题p:?x∈[0,1],a≥ex
∴a≥(exmax,x∈[0,1],
∵ex在x∈[0,1]上单调递增,
∴当x=1时,ex取得最大值e,
∴a≥e.
对于命题q:?x0∈R,x02+4x0+a=0,
∴△=42-4a≥0,解得a≤4.
若命题“p∧q”是假命题,
则p与q一真一假时:
得:$\left\{\begin{array}{l}{a≥e}\\{a>4}\end{array}\right.$或$\left\{\begin{array}{l}{a<e}\\{a≤4}\end{array}\right.$,解得:a>4或a<e,
p,q均是假命题时:
$\left\{\begin{array}{l}{a<e}\\{a>4}\end{array}\right.$,无解,
综上:a∈(-∞,e)∪(4,+∞),
故选:C.

点评 本题考查了指数函数的单调性、一元二次方程有实数根与判别式的关系、简易逻辑的有关知识,考查了计算能力与推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年四川成都石室中学高二文下期中数学试卷(解析版) 题型:选择题

,且,“”是“”的( )

A.充分而不必要条件 B.必要而不充分条件

C.充分必要条件 D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知焦点为(0,1),(0,-1)的椭圆C与直线l:y=-x+1交于 A,B两点,M为 A B的中点,直线 O M的斜率为2.焦点在y轴上的椭圆 E过定点(1,4),且与椭圆C有相同的离心率.过椭圆C上一点作直线y=kx+m(m≠0)交椭圆 E于 M,N两点.
(I)求椭圆C和椭圆 E的标准方程;
(II)求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)是定义在R上的函数,已知n∈N*,且g(x)=C${\;}_{n}^{0}$f($\frac{o}{n}$)x0(1-x)n+C${\;}_{n}^{1}$f($\frac{1}{n}$)x1(1-x)n-1+C${\;}_{n}^{2}$f($\frac{2}{n}$)x2(1-x)n-2+…+C${\;}_{n}^{n}$f($\frac{n}{n}$)xn(1-x)n
(1)若f(x)=1,求g(x);
(2)若f(x),求g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.记公差d不为0的等差数列{an}的前n项和为Sn,S3=9,a3,a5,a8成等比数列,则公差d=1;数列{an}的前n项和为Sn=$\frac{{n}^{2}+3n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设偶函数f(x)(x∈R)满足f(x)=f(2-x),且当x∈[0,1]时,f(x)=x2.又函数g(x)=|cos(πx)|,则函数h(x)=g(x)-f(x)在区间$[{-\frac{1}{2},\frac{3}{2}}]$上的零点个数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中最小正周期为π,且为偶函数的是(  )
A.y=$\frac{1}{2}$|sinx|B.$y=\frac{1}{2}cos(2x+\frac{π}{2})$C.y=tanxD.y=cos$\frac{1}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$) 满足f(x)≤f($\frac{π}{3}$),则函数f(x)的单调递增区间是(  )
A.[2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{3}$](k∈Z)B.[2kπ+$\frac{π}{3}$,2kπ+$\frac{5π}{6}$](k∈Z)
C.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z)D.[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x>2,函数$y=\frac{4}{x-2}+x$的最小值是(  )
A.5B.4C.6D.8

查看答案和解析>>

同步练习册答案