精英家教网 > 高中数学 > 题目详情
14.已知两个不同集合A={1,3,a2-a+3},B=(1,5,a3-a2-4a+7},A∩B={1,3}.
(1)求实数a的值以及集合A和B;
(2)求满足A∩B?M?A∪B的集合M的子集的个数.

分析 (1)由A∩B={1,3}得:a3-a2-4a+7=3,解之得a=1,或a=-2或a=2.然后对a分类讨论得答案;
(2)确定集合M的个数为2,即可求满足A∩B?M?A∪B的集合M的子集的个数.

解答 解:(1)由A∩B={1,3}得:a3-a2-4a+7=3,解之得a=1,或a=-2或a=2.
①a=1时,a2-a+3=3,与集合中元素的互异性矛盾,所以a≠1.
②当a=-2时,a2-a+3=9,A={1,3,9},B={1,3,5},A∩B={1,3}与题意相符.
③当a=2时,a2-a+3=5,A={1,3,5},B={1,3,5},A∩B={1,3,5}与A∩B={1,3}矛盾,所以a≠2;
(2)A∩B={1,3},A∪B={1,3,5,9}
∵A∩B?M?A∪B,
∴集合M的个数为2,
∴满足A∩B?M?A∪B的集合M的子集的个数是4.

点评 本题考查了交集及其运算,体现了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求下列函数的解析式:
(1)已知f(x)是一次函数,并且f[f(x)]=4x+3,求f(x);
(2)已知f(2x+1)=4x2+8x+3,求f(x);
(3)已知f(x+$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$-3,求f(x);
(4)已知f(x)-2f($\frac{1}{x}$)=3x+2,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|y=$\sqrt{{x}^{2}-4}$},B={x|ax-2>0},若A∪B=A,求实数a的值所组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线l经过点P(1,1),且与以A(2,-3),B(-3,-2)为端点的线段AB相交,求此直线的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|-1<x<5},B={x|2<x<7}.
(1)求A∩B,A∪B;
(2)求∁R(A∩B),∁R(A∪B),(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)在区间[-2,5]上的图象如图所示,则f(f(-1))=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={x|x2+ax+12b=0}和B={x|x2-ax+b=0},满足(∁RA)∩B={2},A∩(∁RB)={4},求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设实数x,y满足约束条件$\left\{\begin{array}{l}{2x-y-2≤0}\\{x-y+1≥0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为6.
(1)求实数a,b应满足的关系式;
(2)当a,b为何值时,t=$\frac{{a}^{2}}{2}$+$\frac{{b}^{2}}{3}$取得最小值,并求出此最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若集合A={x||2x-1|<3},B={x|$\frac{2x+1}{3-x}$≤0},则A∪B={x|x<2或x>3}.

查看答案和解析>>

同步练习册答案