精英家教网 > 高中数学 > 题目详情
3.设P(x,y)是曲线C:$\left\{\begin{array}{l}{x=-2+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数,0≤θ<2π)上任意一点,则$\frac{y}{x}$的取值范围是$[-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}]$.

分析 曲线C:$\left\{\begin{array}{l}{x=-2+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数,0≤θ<2π)化为(x+2)2+y2=1,设$\frac{y}{x}$=k,即kx-y=0,利用直线与圆的位置关系即可得出.

解答 解:曲线C:$\left\{\begin{array}{l}{x=-2+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数,0≤θ<2π)化为(x+2)2+y2=1,表示以(-2,0)为圆心,1为半径的圆.
设$\frac{y}{x}$=k,即kx-y=0,
则$\frac{|-2k|}{\sqrt{1+{k}^{2}}}$≤1,化为:${k}^{2}≤\frac{1}{3}$,解得$-\frac{\sqrt{3}}{3}$≤k$≤\frac{\sqrt{3}}{3}$.
故答案为:$[-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}]$.

点评 本题考查了参数方程化为普通方程、点到直线的距离公式、不等式的解法、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.根据下列条件,求二次函数的解析式
(1)已知一次函数的图象过点(-2,0),(1,0),(2,4),求此二次函数的解析式;
(2)已知二次函数的图象过点(-2,1),(0,1),且顶点到x轴的距离为2,求此二次函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx.
(Ⅰ)求函数f(x)的图象在x=1处的切线方程;
(Ⅱ)是否存在实数m,使得对任意的$x∈(\frac{1}{2},+∞)$,都有函数$y=f(x)+\frac{m}{x}$的图象在$g(x)=\frac{e^x}{x}$的图象的下方?若存在,请求出最大整数m的值;若不存在,请说理由.
(参考数据:ln2=0.6931,ln3=1.0986,$\sqrt{e}=1.6487,\root{3}{e}=1.3956$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-$\frac{a-1}{x}$+2a(a∈R)
(Ⅰ)若f(x)的图象在点(1,f(1))处的切线与直线x+2y-1=0垂直,求a的值;
(Ⅱ)若f(x)≤ax+1在[1,+∞)恒成立,求a的取值范围;
(Ⅲ)若n∈N*,证明:ln(n+1)<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{n}{2(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,CD,GF为圆O的两条切线,其中E,F分别为圆O的两个切点,∠FCD=∠DFG.
(1)求证:AB∥CD;
(2)证明:$\frac{ED}{EC}$=$\frac{BD}{AC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.以直角坐标系的原点为极点,x非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ,则曲线C的直角坐标方程为x2+(y-1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在三棱锥P-ABC中,三条侧棱PA,PB,PC两两垂直,且PA=PB=3,PC=4,又M是底面ABC内一点,则M到三个侧面的距离的平方和的最小值是$\frac{144}{41}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线1过点A(4,0),且被圆(x+3)2+(y-1)2=4能截得的弦长为2$\sqrt{3}$.
(1)求圆心到直线l的距离;
(2)求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C的周长被y轴平分,且经过点A($\sqrt{3}$,0),B(0,3).
(1)求圆C的方程;
(2)过原点O作两条直线l1:y=k1x交圆C于点E(x1,y1)、F(x2,y2),作直线l2:y=k2x交圆C于点G(x3,y3)、H(x4,y4)(其中y2>0,y4>0),设EH交x轴于点Q,GF交x轴于点R(如图)
①求证:$\frac{{k}_{1}{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}}$=$\frac{{k}_{2}{x}_{3}{x}_{4}}{{x}_{3}+{x}_{4}}$;
②求证:|OQ|=|OR|.(证明过程不考虑EH或GF垂直于x轴的情形)

查看答案和解析>>

同步练习册答案