精英家教网 > 高中数学 > 题目详情
17.如图所示,某服装设计师要在一块条形布料上画一个等边△ABC作为点缀,使A、B、C三点分别落在条形布料的线条上,已知条形布料相邻横线间的距离为3厘米,则等边△ABC的边长应为2$\sqrt{21}$厘米.

分析 由三角函数的定义和已知题意结合图象可得$\frac{3}{sinα}=\frac{9}{cos(30°-α)}$,结合sin2α+cos2α=1可解得sinα的值,进而可得等边△ABC的边长AB=$\frac{3}{sinα}$,代值计算可得.

解答 解:如图所示,在RT△ABD中$\frac{BD}{AB}$=sinα,∴AB=$\frac{BD}{sinα}$=$\frac{3}{sinα}$,
同理在RT△ACE中$\frac{AE}{AC}$=cos∠CAE=cos[90°-(α+60°-)]=cos(30°-α),
∴AC=$\frac{AE}{cos(30°-α)}$=$\frac{9}{cos(30°-α)}$,
∴$\frac{3}{sinα}=\frac{9}{cos(30°-α)}$,即cos(30°-α)=3sinα,
∴$\frac{\sqrt{3}}{2}$cosα+$\frac{1}{2}$sinα=3sinα,∴$\frac{\sqrt{3}}{2}$cosα=$\frac{5}{2}$sinα,
结合sin2α+cos2α=1可解得sinα=$\frac{\sqrt{21}}{14}$,
∴等边△ABC的边长AB=$\frac{3}{sinα}$=2$\sqrt{21}$
故答案为:2$\sqrt{21}$

$2\sqrt{21}$

点评 本题考查三角形中的几何运算,涉及三角函数的定义和和差角的三角函数,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.第一象限内点P在x轴、y轴上的投影分别是A和B,若矩形APBO的周长为定值2m,试证明:过P垂直于AB的直线PC恒过定点,并求出顶点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛物线y2=4x的焦点为F,经过F的直线与抛物线在x轴上方的部分相交于点A,与准线l交于点B,且AK⊥l于K,如果|AF|=|BF|,那么△AKF的面积是(  )
A.4B.3$\sqrt{3}$C.4$\sqrt{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在矩形ABCD中,点E为边AD上的点,点F为边CD的中点,AB=AE=$\frac{2}{3}$AD=4,现将△ABE沿BE边折至△PBE位置,且平面PBE⊥平面BCDE.
(1)求证:平面PBE⊥平面PEF;
(2)求四棱锥P-BCEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C对隧道底AB的张角θ最大时采集效果最好,则采集效果最好时位置C到AB的距离是(  )
A.2$\sqrt{2}$mB.2$\sqrt{3}$mC.4 mD.6 m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1,(a>1),过点A(-a,0)斜率为k(k>0)的直线交椭圆于点B.直线BO(O为坐标原点)交椭圆于另一点C.
(1)当a=2时是否存在k使得|AC|=|BC|?
(2)若k∈[$\frac{1}{2}$,1],求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在等比数列{an}中,已知a1=-1,a4=64,求q与S4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右顶点是双曲线$\frac{x^2}{3}-{y^2}=1$的顶点,且椭圆的上顶点到双曲线的渐近线的距离为$\frac{{\sqrt{3}}}{2}$,
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在同时满足下列两个条件的直线l:①与双曲线相交于Q1、Q2两点,且$\overrightarrow{O{Q_1}}•\overrightarrow{O{Q_2}}=-5$,②与相交于M1、M2两点,且$|{{M_1}{M_2}}|=\sqrt{10}$.若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在正四棱台ABCD-A1B1C1D1中,A1B1=a,AB=2a,AA1=$\sqrt{2}a$,E,F分别是AD,AB的中点.
(1)求证:平面EFB1D1∥平面BDC1
(2)求证:A1C⊥平面BDC1

查看答案和解析>>

同步练习册答案