精英家教网 > 高中数学 > 题目详情
9.在等比数列{an}中,已知a1=-1,a4=64,求q与S4

分析 由已知列式求得等比数列的公比,代入前n项和公式求得S4

解答 解:在等比数列{an}中,由a1=-1,a4=64,
得${q}^{3}=\frac{{a}_{4}}{{a}_{1}}=-64$,即q=-4.
∴${S}_{4}=\frac{(-1)•[1-(-4)^{4}]}{1-(-4)}=51$.

点评 本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,已知A1,A2,B1,B2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的四个顶点,△A1B1B2的外接圆为圆M,椭圆C过点(-1,$\frac{\sqrt{6}}{3}$),($\frac{3}{2}$,$\frac{1}{2}$).
(1)求椭圆C及圆M的方程;
(2)若点D是圆M劣弧$\widehat{{A}_{1}{B}_{2}}$上一动点(点D异于端点A1,B2),直线B1D分别交线段A1B2,椭圆C于点E,G,直线B2G与A1B1交于点F.
(i)求$\frac{G{B}_{1}}{E{B}_{1}}$的最大值;
(ii)E,F两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知正方体ABCD-A1B1C1D1的棱长为1,且点E为棱AB上任意一个动点.当点B1到平面A1EC的距离为$\frac{{\sqrt{21}}}{6}$时,点E所有可能的位置有几个2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图所示,某服装设计师要在一块条形布料上画一个等边△ABC作为点缀,使A、B、C三点分别落在条形布料的线条上,已知条形布料相邻横线间的距离为3厘米,则等边△ABC的边长应为2$\sqrt{21}$厘米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C所对应的边分别为a,b,c,且a,b,c成等差数列,求证:$\frac{tanA}{2}$•$\frac{tanC}{2}$≥($\frac{tanB}{2}$)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,∠A,∠B,∠C对应的边分别是a,b,c,且4cosC•sin2$\frac{C}{2}$+cos2C=0
(1)求∠C的大小;
(2)若函数f(x)=sin(2x-C),求f(x)的单调区别;
(3)若3ab=25-c2,求△ABC面积的最大值并判断此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)和g(x)是两个定义在区间M上的函数,若对任意的x∈M,存在常数x0∈M,使得f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),则称函数f(x)和g(x)在区间M上是“相似函数”,若f(x)=|log2(x-1)|+b与g(x)=x3-3x2+8在[$\frac{5}{4}$,3]上是“相似函数”,则函数f(x)在区间[$\frac{5}{4}$,3]上的最大值为(  )
A.4B.5C.6D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}满足a1=1,a1+a2+…+an-1=an-1(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{an}满足logabn=an(a>1),求证:$\frac{a}{{a}^{2}-1}$≤$\frac{{b}_{1}}{{b}_{2}-1}$+$\frac{{b}_{2}}{{b}_{3}-1}$+…+$\frac{{b}_{n-1}}{{b}_{n}-1}$$<\frac{1}{a-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点F(1,0),点P为平面上的动点,过点P作直线l:x=-1的垂线,垂足为H,且$\overrightarrow{HP}$•$\overrightarrow{HF}$=$\overrightarrow{FP}$•$\overrightarrow{FH}$.
(1)求动点P的轨迹C的方程;
(2)设点P的轨迹C与x轴交于点M,点A,B是轨迹C上异于点M的不同D的两点,且满足$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,在A,B处分别作轨迹C的切线交于点N,求点N的轨迹E的方程;
(3)在(2)的条件下,求证:kMN•kAB为定值.

查看答案和解析>>

同步练习册答案