精英家教网 > 高中数学 > 题目详情
4.在△ABC中,角A,B,C所对应的边分别为a,b,c,且a,b,c成等差数列,求证:$\frac{tanA}{2}$•$\frac{tanC}{2}$≥($\frac{tanB}{2}$)2

分析 运用等差数列的性质,结合正弦定理,三角函数的和差化积公式和同角的商数关系,化积可得tan$\frac{A}{2}$tan$\frac{C}{2}$=$\frac{1}{3}$,再由二倍角的正切公式,结合基本不等式化积所求不等式的左边,再由余弦定理和基本不等式可得B的范围,进而得证.

解答 解:在△ABC中,∵a,b,c成等差数列,
∴2b=a+c,再结合正弦定理可得2sinB=sinA+sinC.
2sin(A+C)=sinA+sinC,
4sin$\frac{A+C}{2}$cos$\frac{A+C}{2}$=2sin$\frac{A+C}{2}$cos$\frac{A-C}{2}$,
即为2(cos$\frac{A}{2}$cos$\frac{C}{2}$-sin$\frac{A}{2}$sin$\frac{C}{2}$)=cos$\frac{A}{2}$cos$\frac{C}{2}$+sin$\frac{A}{2}$sin$\frac{C}{2}$,
即有cos$\frac{A}{2}$cos$\frac{C}{2}$=3sin$\frac{A}{2}$sin$\frac{C}{2}$,
则tan$\frac{A}{2}$tan$\frac{C}{2}$=$\frac{1}{3}$,
则$\frac{tanA}{2}$•$\frac{tanC}{2}$=$\frac{tan\frac{A}{2}}{1-ta{n}^{2}\frac{A}{2}}$•$\frac{tan\frac{C}{2}}{1-ta{n}^{2}\frac{C}{2}}$=$\frac{tan\frac{A}{2}tan\frac{C}{2}}{1+ta{n}^{2}\frac{A}{2}ta{n}^{2}\frac{C}{2}-(ta{n}^{2}\frac{A}{2}+ta{n}^{2}\frac{C}{2})}$
≥$\frac{\frac{1}{3}}{\frac{10}{9}-2×\frac{1}{3}}$=$\frac{3}{4}$,
由2b=a+c≥2$\sqrt{ac}$,
可得b2≥ac,
由余弦定理可得,cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{(a+c)^{2}-2ac-{b}^{2}}{2ac}$
=$\frac{3{b}^{2}}{2ac}$-1≥$\frac{3}{2}$-1=$\frac{1}{2}$,
即有0<B≤$\frac{π}{3}$,
即有tanB≤$\sqrt{3}$,
则($\frac{tanB}{2}$)2$≤\frac{3}{4}$,
故$\frac{tanA}{2}$•$\frac{tanC}{2}$≥($\frac{tanB}{2}$)2成立.

点评 本题主要考查正弦定理和余弦定理的运用,同时考查等差数列的性质,三角函数的恒等变换和基本不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知中心在原点,焦点在坐标轴上的椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P($\sqrt{3}$,$\frac{\sqrt{3}}{2}$),离心率为$\frac{1}{2}$,过直线l:x=4上一点M引椭圆E的两条切线,切点分别是A、B.
(1)求椭圆E的方程;
(2)若在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的任一点N(x0,y0)处的切线方程是$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$=1.求证:直线AB恒过定点C,并求出定点C的坐标;
(3)是否存在实数λ,使得|AC|+|BC|=λ|AC|•|BC|恒成立?(点C为直线AB恒过的定点)若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合S={y|y=3x,x∈R},T={y|y=x2+1,x∈R},则S∪T=(  )
A.B.SC.TD.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C对隧道底AB的张角θ最大时采集效果最好,则采集效果最好时位置C到AB的距离是(  )
A.2$\sqrt{2}$mB.2$\sqrt{3}$mC.4 mD.6 m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图(如图):
(Ⅰ)根据频率分布直方图估计小区平均每户居民的平均损失
表一:
经济损失4000元以下经济损失4000元以上合计
捐款超过500元30
捐款低于500元6
合计
(Ⅱ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50居民捐款情况如表,在表一空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
(Ⅲ)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,有2天李师傅比张师傅早到小区的概率.
附:临界值表
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在等比数列{an}中,已知a1=-1,a4=64,求q与S4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求函数y=sin(2x-$\frac{π}{4}$)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平面直角坐标系xOy中,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为,F1和F2,上顶点为B,BF2,延长线交椭圆于点A,△ABF的周长为8,且$\overrightarrow{B{F_1}}•\overrightarrow{BA}$=0.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点P(1,0)的直线l与椭圆C相交于M,N两点,点T(4,3),记直线TM,TN的斜率分别为k1,k2,当k1k2最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}{x^2}$+(k-1)x-k+$\frac{3}{2}$,g(x)=xlnx.
(Ⅰ)若函数g(x)的图象在(1,0)处的切线l与函数f(x)的图象相切,求实数k的值;
(Ⅱ)当k=0时,证明:f(x)+g(x)>0;
(Ⅲ)设h(x)=f(x)+g′(x),若h(x)有两个极值点x1,x2(x1≠x2),且h(x1)+h(x2)<$\frac{7}{2}$,求实数k的取值范围.

查看答案和解析>>

同步练习册答案